正在加载图片...
G.Salerno et al. Eqs.(15)-(16)are found.In particular,the complex hop- SCHERMANN J.P.,Phrys.Reo.Lett.,24(1970)861 PeapitndeoftheBHnodelmrepodsotheco [2]DUNLAP D.H.and KENKRE V.M.,Phys.Rev.B,34 (1986) plex coupling the pen the drA/h des [3]IGNATOV A.A.and ROMANOV Y.A.,Phys.Status Solidi B, An on-site interaction term analo HOLTHAUS M.P .,69(1992)35 gous to the U term in Eq.(19)directly appears when the 的NELDTEF anh ulums is t o account be (0-(4 .Rep.,3041998)22g t has b ed in the M g R.B.,NIu Q. m2e pendulums corresponds to a att the cal la worth 0101 (n)t tential that is typically used for this pose in ultracold 040 atom experiments [9,11,15,16]can only provide modu- 12 lation amplitude that are l AMPINI D. MORSCH O.and ARIMONDO E.,.Ret.A, d [13 VEISS C.and HOLTHAUS M.,Phys.Red will be very useful in view of generating synthetic gauge field configurations in our mechanical system. Final r remarks and m4 [15)ZE ESINTA LIGNTER H.CIAMPINI D.MORSCHO.and WEINBERG M.,HAUKE P. effects in a clas ums on 25304 press the coupling between the two pendulums,while e dynamical is ion allows to is ate the s ext our rest 00n d dent frequency.for instance temporally modulated RLC [20]HAUKE electric circuits K.LEWENSTEIN M.and ECKARDT A. rom e poi of view of funda ntal physics,the analogous to the Peierls phase of Bose-Hubbard mod- ed-matter physics.In analogy at Ph insulation,new ,9(2013)738 [22 AIDE expecte 8530 dulums.Further exciting developments in nonlinear 23)M e as a result of the intrinsic [24]LONGHIS.,MARA Plrys.Rev.Le we to Ni gno,Andre AMEIT A ,496(2013)196 edge partial financial su ort from ERC via the QGBE [26] M andrmPini NJ.,MIGDALL A.and TAYLOR [27]BUTIKOV E. .Pys,69(2001)75 hods of Classical Mechanics [291 [1]HAROCHE S.,COHEN-TANNOUDJI C.,AUDOIN C.and 0(A and ROMANB.m P P-6G. Salerno et al. Eqs. (15)-(16) are found. In particular, the complex hop￾ping amplitude of the BH model corresponds to the com￾plex coupling between the pendulums, J e iφij ↔ Ω eff ij : the non-trivial Peierls phase φij = R ri rj dr · A/~ describ￾ing the effect of an external vector potential acting on the quantum particles [32] corresponds to a non-trivial phase of the Ω eff ij coupling. An on-site interaction term analo￾gous to the U term in Eq. (19) directly appears when the anharmonicity of the pendulums is taken into account be￾yond the linearized motion Equations (1)-(4). The modulation scheme that has been envisaged in the present Letter for coupled pendulums corresponds to a temporal modulation of the on-site energies of the BH lattice. There is however one crucial difference worth noting: while the global shaking of the optical lattice po￾tential that is typically used for this purpose in ultracold atom experiments [9, 11, 15, 16] can only provide modu￾lation amplitudes that are linearly dependent on the site position [30], systems of pendulums allow for an individ￾ual addressing of each single pendulum. This freedom will be very useful in view of generating synthetic gauge field configurations in our mechanical system. Final remarks and conclusions. – Inspired by analo￾gous quantum effects, in this Letter we have theoretically studied dynamical localization and dynamical isolation effects in a classical system of two coupled pendulums when a temporally periodic modulation of the oscillation frequencies is applied to them. The dynamical decou￾pling effect can be used in mechanical engineering to sup￾press the coupling between the two pendulums, while the dynamical isolation allows to isolate the system from external forces. Of course, our results are valid for cou￾pled oscillators of any physical nature with a time depen￾dent frequency, for instance temporally modulated RLC electric circuits. From the point of view of fundamental physics, the non-trivial coupling phase between the pendulums is analogous to the Peierls phase of Bose-Hubbard mod￾els of quantum condensed-matter physics. In analogy to orbital magnetism and topological insulation, new in￾triguing phenomena are expected to appear in multi￾dimensional lattices of many temporally modulated pen￾dulums. Further exciting developments in nonlinear physics are expected to arise as a result of the intrinsic anharmonicity of pendulums. ∗ ∗ ∗ We are grateful to Nicola Pugno, Andr´e Eckardt and Jean Dalibard for stimulating discussions. We acknowl￾edge partial financial support from ERC via the QGBE grant and from Provincia Autonoma di Trento. References [1] HAROCHE S., COHEN-TANNOUDJI C., AUDOIN C. and SCHERMANN J. P., Phys. Rev. Lett., 24 (1970) 861. [2] DUNLAP D. H. and KENKRE V. M., Phys. Rev. B, 34 (1986) 3625. [3] IGNATOV A. A. and ROMANOV Y. A., Phys. Status Solidi B, 73 (1976) 327. [4] ZHAO X.-G., J. Phys., 6 (1994) 2751. [5] HOLTHAUS M., Phys. Rev. Lett., 69 (1992) 351. [6] HOLTHAUS M. and HONE D., Phys. Rev. B, 47 (1993) 6499. [7] GROSSMANN F., DITTRICH T., P. JUNG and HANGGI ¨ , Phys. Rev. Lett., 67 (1991) 516. [8] GRIFONI M. and HANGGI ¨ P., Phys. Rep., 304 (1998) 229. [9] MADISON K. W., FISCHER M. C., DIENER R. B., NIU Q. and RAIZEN M. G., Phys. Rev. Lett., 81 (1998) 5093. [10] KAYANUMA Y. and SAITO K., Phys. Rev. A, 77 (2008) 010101. [11] LIGNIER H., SIAS C., CIAMPINI D., SINGH Y., ZENESINI A., MORSCH O. and ARIMONDO E., Phys. Rev. Lett., 99 (2007) 220403. [12] ECKARDT A., HOLTHAUS M., LIGNIER H., ZENESINI A., CIAMPINI D., MORSCH O. and ARIMONDO E., Phys. Rev. A, 79 (2009) 013611. [13] ECKARDT A., WEISS C. and HOLTHAUS M., Phys. Rev. Lett., 95 (2005) 260404. [14] ECKARDT A. and HOLTHAUS M., Europhys. Lett., 80 (2007) 50004. [15] ZENESINI A., LIGNIER H., CIAMPINI D., MORSCH O. and ARIMONDO E., Phys. Rev. Lett., 102 (2009) 100403. [16] STRUCK J., O¨ LSCHLAGER ¨ C., WEINBERG M., HAUKE P., SIMONET J., ECKARDT A., LEWENSTEIN M., SENGSTOCK K. and WINDPASSINGER P., Phys. Rev. Lett., 108 (2012) 225304. [17] CREFFIELD C. E. and SOLS F., Phys. Rev. Lett., 100 (2008) 250402. [18] KOLOVSKY A. R., Europhys. Lett., 93 (2011) 20003. [19] CREFFIELD C. E. and SOLS F., Europhys. Lett., 101 (2013) 40001. [20] HAUKE P., TIELEMAN O., CELI A., O¨ LSCHLANGER ¨ C., SI￾MONET J., STRUCK J., WEINBERG M., WINDPASSINGER P., SENGSTOCK K., LEWENSTEIN M. and ECKARDT A., Phys. Rev. Lett., 109 (2012) 145301. [21] STRUCK J., WEINBERG M., O¨ LSCHLANGER ¨ C., WIND￾PASSINGER P, SIMONET J., SENGSTOCK K., HOPPNER ¨ R., HAUKE P., ECKARDT A., LEWENSTEIN M. and MATHEY L., Nat. Phys., 9 (2013) 738. [22] AIDELSBURGER M., ATALA M., LOHSE M., BARREIRO J. T., PAREDES B. and BLOCH I., Phys. Rev. Lett., 111 (2013) 185301. [23] MIYAKE H., SIVILOGLOU G. A., KENNEDY C. J., BURTON W. C. and KETTERLE W., Phys. Rev. Lett., 111 (2013) 185302. [24] LONGHI S., MARANGONI M., LOBINO M., RAMPONI R., LAPORTA P., CIANCI E. and FOGLIETTI V., Phys. Rev. Lett., 96 (2006) 243901. [25] RECHTSMAN M. C., ZEUNER J. M., PLOTNIK Y., LUMER Y., PODOLSKY D., DREISOW F., NOLTE S., SEGEV M. and SZAMEIT A., Nat., 496 (2013) 196. [26] HAFEZI M., MITTAL S., FAN J., MIGDALL A. and TAYLOR J. M., Nat.Phot., 7 (2013) 1001. [27] BUTIKOV E. I., Am. J. Phys., 69 (2001) 755. [28] ARNOLD V.I., Mathematical Methods of Classical Mechanics (Springer-Verlag, New York) 1989. [29] BERTHET R., PETROSYAN A. and ROMAN B., Am. J. Phys., 70 (2002) 774. p-6
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有