正在加载图片...
·1316 工程科学学报,第42卷,第10期 性剪切应力递增区域随剪切速率的增大而逐渐 (张钦礼,刘伟军,王新民,等.充填膏体流变参数优化预测模型 减小. 中南大学学报:自然科学版,2018,49(1):124) (2)不同测量时间下动态屈服应力2不相同, [10]Liu X H,Wu A X,Wang H J,et al.Influence mechanism and calculation model of CPB rheological parameters.Chin J Eng, 动态屈服应力随测量时间的增加而逐步降低.质 2017,39(2):190 量分数越高,其降幅越大;静态屈服应力3随剪切 (刘晓辉,吴爱祥,王洪江,等.膏体流变参数影响机制及计算模 应力递增梯度的增加而逐步增大.质量分数越高, 型.工程科学学报,2017,39(2):190) 其增幅越大 [11]Cheng H Y,Wu S C,Wu A X,et al.Grading characterization and (3)3种屈服应力随质量分数的增高均增大, yield stress prediction based on paste stability coefficient.Chin J 随质量分数增高,其变化幅度与变异系数均逐渐 Eg,2018,40(10):1168 增高,74%浓度料浆动态屈服应力对应最大变化 (程海勇,吴顺川,吴爱祥,等.基于膏体稳定系数的级配表征及 屈服应力预测.工程科学学报,2018,40(10):1168) 幅度115.91%、最大变异系数27.07%:相比之下静 [12]Coussot P,Nguyen Q D,Huynh H T,et al.Viscosity bifurcation in 态屈服应力3受流变测量过程的影响最小 thixotropic,yielding fluids.JRheol,2002,46(3):573 (4)膏体料浆细观层面机理分析表明,y1、 [13]Coussot P,Nguyen Q D,Huynh H T,et al.Avalanche behavior in 测量过程中的易变行为主要源于扰动过程中的流 yield stress fluids.Phys Rev Lett,2002,88(17):175501 体动力学作用,屈服应力受测量过程影响:膏体动 [14]Buscall R,Kusuma T E,Stickland A D,et al.The non-monotonic 态屈服应力2易变行为主要源于料浆结构改变引 shear-thinning flow of two strongly cohesive concentrated 起的触变性 suspensions.J Non-Newton Fluid Mech,2015,222:112 [15]Meller P C F,Rodts S,Michels M A J,et al.Shear banding and 参考文献 yield stress in soft glassy materials.Phys Rev E,2008,77(4): 041507 [1]Wu A X,Yang Y,Cheng H Y,et al.Status and prospects of paste [16]Baudez J C.Coussot P.Abrupt transition from viscoelastic technology in China.Chin J Eng,2018,40(5):517 solidlike to liquidlike behavior in jammed materials.Phys Rev Lett, (吴爱样,杨莹,程海勇,等.中国膏体技术发展现状与趋势.工 2004,93(12):128302 程科学学报,2018,40(5):517) [17]Coussot P,Raynaud J S,Bertrand F,et al.Coexistence of liquid [2] Rudman M,Simic K,Paterson D A,et al.Raking in gravity and solid phases in flowing soft-glassy materials.Phys Rev Let, thickeners.Int J Miner Process,2008,86(1-4):114 2002.88(21):218301 [3] Pullum L,Boger D V,Sofra F.Hydraulic mineral waste transport [18]Schall P.Hecke M V.Shear bands in matter with granularity.An and storage.Ann Rey Fluid Mech,2018.58:157 Rey Fluid Mech,2010,42:67 [4]Yang C,Guo L J,Zhang L,et al.Study of the rheological [19]Ovarlez G,Rodts S,Chateau X,et al.Phenomenology and characteristics of copper tailings and calculation of resistance in physical origin of shear localization and shear banding in complex pipeline transportation.Chin J Eng,2017,39(5):663 fluids.Rheol Acta,2009,48(8):831 (杨超,郭利杰,张林,等.铜尾矿流变特性与管道输送阻力计算 [20]Moller P C F,Mewis J,Bonn D.Yield stress and thixotropy:on 工程科学学报,2017,39(5):663) the difficulty of measuring yield stresses in practice.Sofi Matter, [5]Knight A,Sofra F,Stickland A,et al.Variability of shear yield 2006,2(4:274 stress-measurement and implications for mineral processing / [21]Yang L H,Wang H J,Wu A X,et al.Thixotropy of unclassified Proceedings of the 20th International Seminar on Paste and pastes in the process of stirring and shearing.Chin J Eng,2016. Thickened Tailings.Beijing,2017:57 38(10):1343 [6]Sofra F.Rheological Properties of Fresh Cemented Paste Tailings (杨柳华,王洪江,吴爱祥,等.全尾砂膏体搅拌剪切过程的触变 I/Paste Tailings Management.Berlin:Springer Press,2017:33 性.工程科学学报,2016,38(10):1343) [7]Mitsoulis E.Flows of Viscoplastic Materials:Models and [22]Coussot P.Ancey C.Rheophysical classification of concentrated Computations./Rheology Reviews.London:British Society of suspensions and granular pastes.Plrys Rev E,1999,59(4):4445 Rheology.2007:135 [23]Stickland A D,Kumar A,Kusuma T E,et al.The effect of [8]Zhang L F,Wu A X,Wang H J,et al.Evolution law of yield stress premature wall yield on creep testing of strongly flocculated in paste tailings.Chin J Nonferrous Met,2018,28(8):1631 suspensions.Rheol Acta,2015,54(5):337 (张连富,吴爱祥,王洪江,等.尾矿膏体屈服应力演化规律.中 [24]Fisher D T,Clayton S A,Boger D V,et al.The bucket rheometer 国有色金属学报,2018,28(8):1631) for shear stress-shear rate measurement of industrial suspensions.J [9]Zhang Q L,Liu W J,Wang X M,et al.Optimal prediction model Rheol,.2007,51(5):821 of backfill paste rheological parameters.J Cent South Univ (Sci [25]Mahaut F,Mokeddem S,Chateau X,et al.Effect of coarse particle Techno0.2018.49(1):124 volume fraction on the yield stress and thixotropy of cementitious性剪切应力递增区域随剪切速率的增大而逐渐 减小. (2)不同测量时间下动态屈服应力 y2 不相同, 动态屈服应力随测量时间的增加而逐步降低. 质 量分数越高,其降幅越大;静态屈服应力 y3 随剪切 应力递增梯度的增加而逐步增大. 质量分数越高, 其增幅越大. (3)3 种屈服应力随质量分数的增高均增大, 随质量分数增高,其变化幅度与变异系数均逐渐 增高,74% 浓度料浆动态屈服应力对应最大变化 幅度 115.91%、最大变异系数 27.07%;相比之下静 态屈服应力 y3 受流变测量过程的影响最小. (4)膏体料浆细观层面机理分析表明,y1、y3 测量过程中的易变行为主要源于扰动过程中的流 体动力学作用,屈服应力受测量过程影响;膏体动 态屈服应力 y2 易变行为主要源于料浆结构改变引 起的触变性. 参    考    文    献 Wu A X, Yang Y, Cheng H Y, et al. Status and prospects of paste technology in China. Chin J Eng, 2018, 40(5): 517 (吴爱祥, 杨莹, 程海勇, 等. 中国膏体技术发展现状与趋势. 工 程科学学报, 2018, 40(5):517) [1] Rudman  M,  Simic  K,  Paterson  D  A,  et  al.  Raking  in  gravity thickeners. Int J Miner Process, 2008, 86(1-4): 114 [2] Pullum L, Boger D V, Sofra F. Hydraulic mineral waste transport and storage. Ann Rev Fluid Mech, 2018, 58: 157 [3] Yang  C,  Guo  L  J,  Zhang  L,  et  al.  Study  of  the  rheological characteristics  of  copper  tailings  and  calculation  of  resistance  in pipeline transportation. Chin J Eng, 2017, 39(5): 663 (杨超, 郭利杰, 张林, 等. 铜尾矿流变特性与管道输送阻力计算. 工程科学学报, 2017, 39(5):663) [4] Knight  A,  Sofra  F,  Stickland  A,  et  al.  Variability  of  shear  yield stress –measurement  and  implications  for  mineral  processing  // Proceedings of the 20th International Seminar on Paste and Thickened Tailings. Beijing, 2017: 57 [5] Sofra F. Rheological Properties of Fresh Cemented Paste Tailings // Paste Tailings Management. Berlin: Springer Press, 2017: 33 [6] Mitsoulis  E. Flows of Viscoplastic Materials: Models and Computations.  // Rheology Reviews.  London:  British  Society  of Rheology. 2007: 135 [7] Zhang L F, Wu A X, Wang H J, et al. Evolution law of yield stress in paste tailings. Chin J Nonferrous Met, 2018, 28(8): 1631 (张连富, 吴爱祥, 王洪江, 等. 尾矿膏体屈服应力演化规律. 中 国有色金属学报, 2018, 28(8):1631) [8] Zhang Q L, Liu W J, Wang X M, et al. Optimal prediction model of  backfill  paste  rheological  parameters. J Cent South Univ (Sci Technol), 2018, 49(1): 124 [9] (张钦礼, 刘伟军, 王新民, 等. 充填膏体流变参数优化预测模型. 中南大学学报: 自然科学版, 2018, 49(1):124) Liu  X  H,  Wu  A  X,  Wang  H  J,  et  al.  Influence  mechanism  and calculation  model  of  CPB  rheological  parameters. Chin J Eng, 2017, 39(2): 190 (刘晓辉, 吴爱祥, 王洪江, 等. 膏体流变参数影响机制及计算模 型. 工程科学学报, 2017, 39(2):190) [10] Cheng H Y, Wu S C, Wu A X, et al. Grading characterization and yield stress prediction based on paste stability coefficient. Chin J Eng, 2018, 40(10): 1168 (程海勇, 吴顺川, 吴爱祥, 等. 基于膏体稳定系数的级配表征及 屈服应力预测. 工程科学学报, 2018, 40(10):1168) [11] Coussot P, Nguyen Q D, Huynh H T, et al. Viscosity bifurcation in thixotropic, yielding fluids. J Rheol, 2002, 46(3): 573 [12] Coussot P, Nguyen Q D, Huynh H T, et al. Avalanche behavior in yield stress fluids. Phys Rev Lett, 2002, 88(17): 175501 [13] Buscall R, Kusuma T E, Stickland A D, et al. The non-monotonic shear-thinning  flow  of  two  strongly  cohesive  concentrated suspensions. J Non-Newton Fluid Mech, 2015, 222: 112 [14] Møller P C F, Rodts S, Michels M A J, et al. Shear banding and yield  stress  in  soft  glassy  materials. Phys Rev E,  2008,  77(4): 041507 [15] Baudez  J  C,  Coussot  P.  Abrupt  transition  from  viscoelastic solidlike to liquidlike behavior in jammed materials. Phys Rev Lett, 2004, 93(12): 128302 [16] Coussot  P,  Raynaud  J  S,  Bertrand  F,  et  al.  Coexistence  of  liquid and  solid  phases  in  flowing  soft-glassy  materials. Phys Rev Lett, 2002, 88(21): 218301 [17] Schall P, Hecke M V. Shear bands in matter with granularity. Ann Rev Fluid Mech, 2010, 42: 67 [18] Ovarlez  G,  Rodts  S,  Chateau  X,  et  al.  Phenomenology  and physical origin of shear localization and shear banding in complex fluids. Rheol Acta, 2009, 48(8): 831 [19] Møller P C F, Mewis J, Bonn D. Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice. Soft Matter, 2006, 2(4): 274 [20] Yang L H, Wang H J, Wu A X, et al. Thixotropy of unclassified pastes  in  the  process  of  stirring  and  shearing. Chin J Eng,  2016, 38(10): 1343 (杨柳华, 王洪江, 吴爱祥, 等. 全尾砂膏体搅拌剪切过程的触变 性. 工程科学学报, 2016, 38(10):1343) [21] Coussot  P,  Ancey  C.  Rheophysical  classification  of  concentrated suspensions and granular pastes. Phys Rev E, 1999, 59(4): 4445 [22] Stickland  A  D,  Kumar  A,  Kusuma  T  E,  et  al.  The  effect  of premature  wall  yield  on  creep  testing  of  strongly  flocculated suspensions. Rheol Acta, 2015, 54(5): 337 [23] Fisher D T, Clayton S A, Boger D V, et al. The bucket rheometer for shear stress-shear rate measurement of industrial suspensions. J Rheol, 2007, 51(5): 821 [24] Mahaut F, Mokeddem S, Chateau X, et al. Effect of coarse particle volume fraction on the yield stress and thixotropy of cementitious [25] · 1316 · 工程科学学报,第 42 卷,第 10 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有