正在加载图片...
李晓彤等:经验原子势下铝镁合金中溶质原子向位错芯迁移的最低能量路径 ·905· 为衡量标准,位错对扩散行为的影响范围在拉应力 [8]Wang Z G.Huang Y S,Ge T S.Interaction of solute atoms with 区为1.721nm,约7个原子层间距 dislocations in aluminum-magnesium alloys under fatigue loading. Acta Phys Sin,1965,.21(6):1253 b)有空位参与扩散时,各个位置的迁移势能垒 (王中光,黄元士,葛庭燧.在铝镁合金的疲劳载荷过程中溶 均显著降低,降幅可达87%,最大仅为0.59eV.滑 质原子与位错的交互作用.物理学报,1965,21(6):1253) 移面内迁移所需的势能垒最小为0.33eV,拉应力区 [9]Aboulfadl H,Deges J.Choi P,et al.Dynamic strain aging stud- 内迁移所需的势能垒最小为0.38eV.位错对扩散 ied at the atomic scale.Acta Mater,2015,86:34 行为的影响范围在拉应力区约为6个原子层间距. [10]Lin J P.Effect of Mg content on dynamic recrystallization behav- 迁移机制所需的热激活时间依过渡态理论估算在8 iours of Al-Mg alloys.J Univ Sci Technol Beijing,1997,19 (1):47 ms和2us之间. (林均品.Mg含量对A-Mg合金动态再结品的影响.北京科 c)无论有无空位参与,随着与位错距离的缩 技大学学报,1997,19(1):47) 短,溶质原子向位错迁移的势能垒均会降低,降幅可 [11]Keralavarma S M,Bower A F,Curtin WA.Quantum-to-continu- 达57%,且系统总能量也会降低,单次迁移最多可 um prediction of ductility loss in aluminium-magnesium alloys due 降低0.09eV. to dynamic strain aging.Nature Commun,2014,5:4604 当溶质原子位于位错拉应力区且沿着位错线排 [12]Du H L,Chen Z J.Molecular dynamies investigation on the dis- 布时,从能量角度考虑有一个线密度极大值,即溶质 tribution morphology of solute atoms in Al-Mg alloy.J Hefei Unip Technol Nat Sci,2011,34(3):346 原子不倾向于过于密集地分布于位错线下. (杜海龙,陈忠家.铝镁合金中溶质分布形态的分子动力学 研究.合肥工业大学学报(自然科学版),2011,34(3): 参考文献 346) [1]Portevin A,Le Chatelier F.Sur un phenomene observe lors de [13]Curtin WA,Olmsted D L,Hector Jr L G.A predictive mecha- I'essai de traction dalliages en cours de transformation.Comptes nism for dynamic strain ageing in aluminium-magnesium alloys. Rendus de F'Academie des Sciences Paris,1923,176:507 Nature Mater,2006,5(11)875 [2]Araki H,Saji S,Okabe T,et al.Solidation of mechanically al- [14]Lebyodkin M,Dunin-Barkowskii L,Brechet Y,et al.Spatio- loyed Al-10.7%Ti powder at low temperature and high pressure of temporal dynamics of the Portevin-Le Chatelier effect:experi- 2GPa.Mater Trans JIM,1995,36 (3):465 ment and modelling.Acta Mater,2000,48(10):2529 [3]Peng K P,Chen WZ,Qian K W.Study of an anomalous serrated [15]He Y S,Fu S H,Zhang QC.Simulations of the interactions be- yielding phenomenon in 3004 aluminum alloy.Acta Phys Sin, tween dislocations and solute atoms in different loading condi- 2006,55(7):3569 tions.Acta Phys Sin,2014,63(22):228102-1 (彭开葬,陈文哲,钱匡武.3004铝合金“反常”锯齿屈服现 (何艳生,符师桦,张青川.不同加载条件下位错和溶质原 象的研究.物理学报,2006,55(7):3569) 子交互作用的数值模拟.物理学报,2014,63(22):228102- [4]Van den Beukel A.Theory of the effect of dynamic strain aging on 1) mechanical properties.Phys Status SolidiA,1975,3(1):197 [16]Fan Y,Osetskiy Y N,Yip S,et al.Mapping strain rate depend- [5]Sun L,Zhang Q C,Cao PT.Influence of solute cloud and precip- ence of dislocation-defect interactions by atomistic simulations. itates on spatiotemporal characteristics of Portevin-Le Chatelier Proc Natl Acad Sci USA,2013,110(44):17756 effect in A2024 aluminum alloys.Chin Phys B,2009,18(8): [17]Tang X Z,Guo Y F,Sun L X,et al.Strain rate effect on dislo- 3500 cation climb mechanism via self-interstitials.Mater Sci Eng A, [6]Cao PT,Zhang Q C.Xiao R,et al.The Portevin-Le Chatelier 2018,713:141 effect in Al-Mg alloy investigated by infrared pyrometry.Acta Phys [18]Yan X,Sharma P.Time-scaling in atomistics and the rate-de- Sin,2009,58(8):5591 pendent mechanical behavior of nanostructures.Nano Lett, (曹鹏涛,张青川,肖锐,等.红外测温法研究A-Mg合金中 2016,16(6):3487 的Portevin-Le Chatelier效应.物理学报,2009,58(8):5591) [19]Jiang H F,Zhang QC,Chen X D,et al.Numerical simulation [7]Gao Y,Fu S H,Cai Y L,et al.Digital shearography investigation of the dynamic interactions between dislocation and solute atoms. on the out-plane deformation of the Portevin-Le Chatelier bands. Acta Phys Sin,2007,56(6):3388 Acta Phys Sin,2014,63(6):066201-1 (江慧丰,张青川,陈学东,等.位错与溶质原子间动态相互 (高越,符师桦,蔡玉龙,等.数字剪切散斑干涉法研究铝合 作用的数值模拟研究.物理学报,2007,56(6):3388) 金中Portevin-Le Chatelier带的离面变形行为.物理学报, [20]Liu X Y,Ohotnicky PP,Adams J B,et al.Anisotropic surface 2014,63(6):066201-1) segregation in Al-Mg alloys.Surf Sci,1997,373(2-3):357李晓彤等: 经验原子势下铝镁合金中溶质原子向位错芯迁移的最低能量路径 为衡量标准,位错对扩散行为的影响范围在拉应力 区为 1郾 721 nm,约 7 个原子层间距. b)有空位参与扩散时,各个位置的迁移势能垒 均显著降低,降幅可达 87% ,最大仅为 0郾 59 eV. 滑 移面内迁移所需的势能垒最小为 0郾 33 eV,拉应力区 内迁移所需的势能垒最小为 0郾 38 eV. 位错对扩散 行为的影响范围在拉应力区约为 6 个原子层间距. 迁移机制所需的热激活时间依过渡态理论估算在 8 ms 和 2 滋s 之间. c)无论有无空位参与,随着与位错距离的缩 短,溶质原子向位错迁移的势能垒均会降低,降幅可 达 57% ,且系统总能量也会降低,单次迁移最多可 降低 0郾 09 eV. 当溶质原子位于位错拉应力区且沿着位错线排 布时,从能量角度考虑有一个线密度极大值,即溶质 原子不倾向于过于密集地分布于位错线下. 参 考 文 献 [1] Portevin A, Le Chatelier F. Sur un ph佴nom侉ne observ佴 lors de l蒺essai de traction d蒺alliages en cours de transformation. Comptes Rendus de l蒺Acad佴mie des Sciences Paris, 1923, 176: 507 [2] Araki H, Saji S, Okabe T, et al. Solidation of mechanically al鄄 loyed Al鄄鄄10. 7% Ti powder at low temperature and high pressure of 2 GPa. Mater Trans JIM, 1995, 36 (3): 465 [3] Peng K P, Chen W Z, Qian K W. Study of an anomalous serrated yielding phenomenon in 3004 aluminum alloy. Acta Phys Sin, 2006, 55(7): 3569 (彭开萍, 陈文哲, 钱匡武. 3004 铝合金“反常冶锯齿屈服现 象的研究. 物理学报, 2006, 55(7): 3569) [4] Van den Beukel A. Theory of the effect of dynamic strain aging on mechanical properties. Phys Status Solidi A, 1975, 30(1): 197 [5] Sun L, Zhang Q C, Cao P T. Influence of solute cloud and precip鄄 itates on spatiotemporal characteristics of Portevin鄄鄄 Le Chatelier effect in A2024 aluminum alloys. Chin Phys B, 2009, 18 (8 ): 3500 [6] Cao P T, Zhang Q C, Xiao R, et al. The Portevin鄄鄄 Le Chatelier effect in Al鄄鄄Mg alloy investigated by infrared pyrometry. Acta Phys Sin, 2009, 58(8): 5591 (曹鹏涛, 张青川, 肖锐, 等. 红外测温法研究 Al鄄鄄 Mg 合金中 的 Portevin鄄鄄Le Chatelier 效应. 物理学报, 2009, 58(8): 5591) [7] Gao Y, Fu S H, Cai Y L, et al. Digital shearography investigation on the out鄄plane deformation of the Portevin鄄鄄 Le Chatelier bands. Acta Phys Sin, 2014, 63(6): 066201鄄鄄1 (高越, 符师桦, 蔡玉龙, 等. 数字剪切散斑干涉法研究铝合 金中 Portevin鄄鄄 Le Chatelier 带的离面变形行为. 物理学报, 2014, 63(6): 066201鄄鄄1) [8] Wang Z G, Huang Y S, Ge T S. Interaction of solute atoms with dislocations in aluminum鄄magnesium alloys under fatigue loading. Acta Phys Sin, 1965, 21(6): 1253 (王中光, 黄元士, 葛庭燧. 在铝镁合金的疲劳载荷过程中溶 质原子与位错的交互作用. 物理学报, 1965, 21(6): 1253) [9] Aboulfadl H, Deges J, Choi P, et al. Dynamic strain aging stud鄄 ied at the atomic scale. Acta Mater, 2015, 86: 34 [10] Lin J P. Effect of Mg content on dynamic recrystallization behav鄄 iours of Al鄄鄄 Mg alloys. J Univ Sci Technol Beijing, 1997, 19 (1): 47 (林均品. Mg 含量对 Al鄄鄄Mg 合金动态再结晶的影响. 北京科 技大学学报, 1997, 19(1): 47) [11] Keralavarma S M, Bower A F, Curtin W A. Quantum鄄to鄄continu鄄 um prediction of ductility loss in aluminium鄄magnesium alloys due to dynamic strain aging. Nature Commun, 2014, 5: 4604 [12] Du H L, Chen Z J. Molecular dynamics investigation on the dis鄄 tribution morphology of solute atoms in Al鄄鄄Mg alloy. J Hefei Univ Technol Nat Sci, 2011, 34(3): 346 (杜海龙, 陈忠家. 铝镁合金中溶质分布形态的分子动力学 研究. 合肥工业大学学报( 自然科学版), 2011, 34 ( 3 ): 346) [13] Curtin W A, Olmsted D L, Hector Jr L G. A predictive mecha鄄 nism for dynamic strain ageing in aluminium鄄鄄 magnesium alloys. Nature Mater, 2006, 5(11): 875 [14] Lebyodkin M, Dunin鄄Barkowskii L, Brechet Y, et al. Spatio鄄 temporal dynamics of the Portevin鄄鄄 Le Chatelier effect: experi鄄 ment and modelling. Acta Mater, 2000, 48(10): 2529 [15] He Y S, Fu S H, Zhang Q C. Simulations of the interactions be鄄 tween dislocations and solute atoms in different loading condi鄄 tions. Acta Phys Sin, 2014, 63(22): 228102鄄1 (何艳生, 符师桦, 张青川. 不同加载条件下位错和溶质原 子交互作用的数值模拟. 物理学报, 2014, 63(22): 228102鄄 1) [16] Fan Y, Osetskiy Y N, Yip S, et al. Mapping strain rate depend鄄 ence of dislocation鄄defect interactions by atomistic simulations. Proc Natl Acad Sci USA, 2013, 110(44): 17756 [17] Tang X Z, Guo Y F, Sun L X, et al. Strain rate effect on dislo鄄 cation climb mechanism via self鄄interstitials. Mater Sci Eng A, 2018, 713: 141 [18] Yan X, Sharma P. Time鄄scaling in atomistics and the rate鄄de鄄 pendent mechanical behavior of nanostructures. Nano Lett, 2016, 16(6): 3487 [19] Jiang H F, Zhang Q C, Chen X D, et al. Numerical simulation of the dynamic interactions between dislocation and solute atoms. Acta Phys Sin, 2007, 56(6): 3388 (江慧丰, 张青川, 陈学东, 等. 位错与溶质原子间动态相互 作用的数值模拟研究. 物理学报, 2007, 56(6): 3388) [20] Liu X Y, Ohotnicky P P, Adams J B, et al. Anisotropic surface segregation in Al鄄鄄Mg alloys. Surf Sci, 1997, 373(2鄄3): 357 ·905·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有