6.3.2 Cyclic groups 1. Order of an element Definition 13: Let G be a group with an identity element e. We say that a is of order n if an=e, and for any (<m<n, amte. We say that the order of a is infinite if an*e for any positive integer n. Example: groupl(l, -1,i-i; x1 i4-=1 (-i)2=-1,(-i)3=i,(-i)4=16.3.2 Cyclic groups 1.Order of an element Definition 13: Let G be a group with an identity element e. We say that a is of order n if a n =e, and for any 0<m<n, a me. We say that the order of a is infinite if a n e for any positive integer n. Example:group[{1,-1,i.-i};], i 2=-1,i3=-i, i 4=1 (-i)2=-1, (-i)3=i, (-i)4=1