正在加载图片...
J Mater Sci(2008)43:6747-6757 6757 to the individual fiber. These models are far less successfull 13. Fantner GE, Rabinovych O, Schitter G, Thurner P, Kindt JH in translating the properties of the interphase on an indi- Finch MM, Weaver JC, Golde LS, Morse DE, Lipman EA vidual fiber into the performance of a multifiber composite angelo Iw, Hansma PK(2006)Compos Sci Technol 66: 1205 14. Kim J-K, Mai Y-w(1998)Engineered interfaces in fiber rein 16. Cave NG, Kinloch AJ(1992)Polymer 33: 1167 nG forced composites, Ch 3. Elsevier, Amsterdam, p On the nano-scale, the discrete molecular structure of 15. Droste dh, DiBenedetto AT(1969)J Appl Polym Sci 13: 2149 the polymer has to be considered. The segmental im bilization seems to be the primary reinforcing mechanism 18.Kim -K, Mai Y-w (1998)Engineered interfaces in fiber rein in true polymer nanocomposites at temperatures near and forced composites, Ch 4. Elsevier, Amsterdam, p 93 above the Tg. Reptation model and simple percolation 19 Pluedemann EP(982)Silane coupling agents. Plenum Press, model were used to describe immobilization of chains near 20 DiBenedetto AT, Huang SI, Birch D, Gomes J, Lee WC(1994) solid nano-particles and to explain the peculiarities in the Compos Struct 27: 73 viscoleastic response of polymers near solid surfaces of 21. Jancar J(2008)Polym Compos 28: large polymer-inclusion contact area. The"interphase "in 22 Jancar J(2006)Comp Sci Technol 66: 3144 the col m sense does not exist at the nano-scale when 3. Maranganti R, Sharma P(2007)J Mech Phys Solids 55: 1823 relaxation processes in individual discrete chains are taken 25. Narayanan RA, Thiyagarajan P, Zhu A-, Ash BI, Shofner M into account and the chains with retarded reptation can be Schadler LS, Kumar SK, Sternstein Ss(2007) Polymer 48: 5734 considered forming the"interphase "analogue in the dis- 26. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler Ls(2006) crete matter. For a common polymer, all the chains in the omposite become effectively immobilized when the 27. Yu T, Lin J, Xu J, Chen T, Lin S, Tian X (2007) Comp Sci Technol 67: 3219 internal filler-polymer interface area equals approximately 28. Drozdov AD. Jensen EA. Christiansen JC(2008)Int J Eng Sci In polymers at very low temperatures, the classical Ber- 29. Ha SR, Rhee KY, Kim HC, Kim JT (2008)Coll houlli-Euler continuum elasticity becomes not valid below 30. Cosoli P. Scocchi G. Pricl S. Fermeglia M(2008) Micro approximately 5 nm. The size of this characteristic volume Mesopor Mater 107: 169 increases with increasing temperature and higher-order 31. Jiang L, Zhang J, Wolcott MP (2007)Polymer 48:7632 strain elasticity along with molecular dynamics approach 32. Stemstein SS, Zhu AJ(2002)Macromolecules 35: 7262 has to be used as the bridging law to connect behavior of the 33. Kalfus J, Jancar J(2007) Polym Compos 28: 365 4. Kalfus J, Jancar J(2007)J Polym Sci: Part B: Polym Phys discrete matter at nano-scale with mechanical response of ontinuous matter at larger length scales 35. Kalfus J, Jancar J(2007)Polym Compos 28: 743 Bettye L et al (1999)Nature 399: 761 Acknowledgement Financial support from the Czech Ministry of 37. Zidek J, Jancar J(2006)Key Eng Mater 334-33.5:857 Education, Youth and Sports under grant MsM 002163050l is great 38. Doi M, Edwards SF(2003)Theory of polymer dynamics. Oxford 39. Lin Y-H (1985) Macromolecules 18: 2779 40. Zheng x. Sauer BB, van Alsten JG, Schwarz SA, Rafail References 41. Yoon DY Suter UW. Sund L. Pukanszky B(2005)Eur Polym J 41: 645 42. Subbotin A, Semenov A, Doi M(1997) Phys Rev E 56:56 2. DiBenedetto AT(2001) Mater Sci Eng A302: 74 43. deGennes P-G(1979)Scaling concepts in polymer physics 3. Hashin Z(2002)J Mech Phys Solids 50: 2509 Cornell University Press, London 4. Nairn JA(2007) Comput Mater Sci 40:525 44 Jancar J, Kucera J, Vesely P(1991)J Mater Sci 26: 4878 5. Lauke B, Schuller T(2002)Comp Sci Technol 6 45. Strobl G(2007)The physics of polymers. Springer, Berlin 6. Kalfus J, Jancar J(2007) Polymer 48: 3935 46. Kouris D, Mi C(2007)Surf Sci 601: 757 7. Martin RB, Burr DB. Sharkey NA (1998)Skeletal tissue 47. Park SK, Gao X-L(2006)J Micromech Microeng 16: 2355 mechanics New York 48. Sharma P, Ganti S(2004)J Appl Mech 71: 663 8. Galictis C(2 Beaumont PWR, Soutis C(eds) Multi-scale 49. Sharma P, Ganti S, Bhate N(2003)Appl Phys Lett 82: 535 modelling osite material systems. Woodhead Publ. Inc, 50. Chen Y, Lee JD, Eskandarian A(2003)Int J Eng Sci 41: 61 Cambridge, p 51. Chen Y, Lee JD. Eskandarian A (2004) Int J Solids Struct 9. Jancar J(2006)Comp Interf 13: 853 41:2085 10. Ji B, Gao H (2004)J Mech Phys Solids 52: 1963 52. Zang X, Sharma P, Johnsson HT(2007)Phys Rev B 75: 155319 I1 Ji B, Gao H (2006)Comp Sci Technol 66: 1212 53. Nikolov S, Han CS, Rabbe d(2007)J Solids Struct 44: 1582 12. Fantner G, Oroudjev e, Schitter G, Golde Ls, Thumer P, MM. Turner P, Gutmann T Morse DE, Hansma H, Hansm (2006) Biophys J 90: 1411 2 Springerto the individual fiber. These models are far less successfull in translating the properties of the interphase on an indi￾vidual fiber into the performance of a multifiber composite parts. On the nano-scale, the discrete molecular structure of the polymer has to be considered. The segmental immo￾bilization seems to be the primary reinforcing mechanism in true polymer nanocomposites at temperatures near and above the Tg. Reptation model and simple percolation model were used to describe immobilization of chains near solid nano-particles and to explain the peculiarities in the viscoleastic response of polymers near solid surfaces of large polymer-inclusion contact area. The ‘‘interphase’’ in the continuum sense does not exist at the nano-scale when relaxation processes in individual discrete chains are taken into account and the chains with retarded reptation can be considered forming the ‘‘interphase’’ analogue in the dis￾crete matter. For a common polymer, all the chains in the composite become effectively immobilized when the internal filler-polymer interface area equals approximately 45 m2 . In polymers at very low temperatures, the classical Ber￾noulli–Euler continuum elasticity becomes not valid below approximately 5 nm. The size of this characteristic volume increases with increasing temperature and higher-order strain elasticity along with molecular dynamics approach has to be used as the bridging law to connect behavior of the discrete matter at nano-scale with mechanical response of continuous matter at larger length scales. Acknowledgement Financial support from the Czech Ministry of Education, Youth and Sports under grant MSM 0021630501 is greatly appreciated. References 1. Puka´nszky B (2005) Eur Polym J 41:645 2. DiBenedetto AT (2001) Mater Sci Eng A302:74 3. Hashin Z (2002) J Mech Phys Solids 50:2509 4. Nairn JA (2007) Comput Mater Sci 40:525 5. Lauke B, Schuller T (2002) Comp Sci Technol 62:1965 6. Kalfus J, Jancar J (2007) Polymer 48:3935 7. Martin RB, Burr DB, Sharkey NA (1998) Skeletal tissue mechanics. Springer, New York 8. Galiotis C (2005) In: Beaumont PWR, Soutis C (eds) Multi-scale modelling of composite material systems. Woodhead Publ. Inc., Cambridge, p 33 9. Jancar J (2006) Comp Interf 13:853 10. Ji B, Gao H (2004) J Mech Phys Solids 52:1963 11. Ji B, Gao H (2006) Comp Sci Technol 66:1212 12. Fantner G, Oroudjev E, Schitter G, Golde LS, Thurner P, Finch MM, Turner P, Gutsmann T, Morse DE, Hansma H, Hansma PK (2006) Biophys J 90:1411 13. Fantner GE, Rabinovych O, Schitter G, Thurner P, Kindt JH, Finch MM, Weaver JC, Golde LS, Morse DE, Lipman EA, Rangelow IW, Hansma PK (2006) Compos Sci Technol 66:1205 14. Kim J-K, Mai Y-W (1998) Engineered interfaces in fiber rein￾forced composites, Ch 3. Elsevier, Amsterdam, p 43 15. Droste DH, DiBenedetto AT (1969) J Appl Polym Sci 13:2149 16. Cave NG, Kinloch AJ (1992) Polymer 33:1162 17. Xie X-Q, Ranade SV, DiBenedetto AT (1999) Polymer 40:6297 18. Kim J-K, Mai Y-W (1998) Engineered interfaces in fiber rein￾forced composites, Ch 4. Elsevier, Amsterdam, p 93 19. Pluedemann EP (1982) Silane coupling agents. Plenum Press, New York 20. DiBenedetto AT, Huang SJ, Birch D, Gomes J, Lee WC (1994) Compos Struct 27:73 21. Jancar J (2008) Polym Compos 28:1 22. Jancar J (2006) Comp Sci Technol 66:3144 23. Maranganti R, Sharma P (2007) J Mech Phys Solids 55:1823 24. Kelarakis A, Giannelis EP (2007) Polymer 48:7567 25. Narayanan RA, Thiyagarajan P, Zhu A-J, Ash BJ, Shofner M, Schadler LS, Kumar SK, Sternstein SS (2007) Polymer 48:5734 26. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Comp Sci Technol 66:1162 27. Yu T, Lin J, Xu J, Chen T, Lin S, Tian X (2007) Comp Sci Technol 67:3219 28. Drozdov AD, Jensen EA, Christiansen JC (2008) Int J Eng Sci 46:87 29. Ha SR, Rhee KY, Kim HC, Kim JT (2008) Coll Surf A: Phys￾icochem Eng Aspects 313–314:112 30. Cosoli P, Scocchi G, Pricl S, Fermeglia M (2008) Micropor Mesopor Mater 107:169 31. Jiang L, Zhang J, Wolcott MP (2007) Polymer 48:7632 32. Sternstein SS, Zhu AJ (2002) Macromolecules 35:7262 33. Kalfus J, Jancar J (2007) Polym Compos 28:365 34. Kalfus J, Jancar J (2007) J Polym Sci: Part B: Polym Phys 45:1380 35. Kalfus J, Jancar J (2007) Polym Compos 28:743 36. Bettye L et al (1999) Nature 399:761 37. Zidek J, Jancar J (2006) Key Eng Mater 334–335:857 38. Doi M, Edwards SF (2003) Theory of polymer dynamics. Oxford University Press, London 39. Lin Y-H (1985) Macromolecules 18:2779 40. Zheng X, Sauer BB, van Alsten JG, Schwarz SA, Rafailovich MH, Sokolov J, Rubinstein M (1995) Phys Rev Lett 74:407 41. Yoon DY, Suter UW, Sundararajan PR, Flory PJ (1975) Mac￾romolecules 8:784 42. Subbotin A, Semenov A, Doi M (1997) Phys Rev E 56:56 43. deGennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press, London 44. Jancar J, Kucera J, Vesely P (1991) J Mater Sci 26:4878 45. Strobl G (2007) The physics of polymers. Springer, Berlin 46. Kouris D, Mi C (2007) Surf Sci 601:757 47. Park SK, Gao X-L (2006) J Micromech Microeng 16:2355 48. Sharma P, Ganti S (2004) J Appl Mech 71:663 49. Sharma P, Ganti S, Bhate N (2003) Appl Phys Lett 82:535 50. Chen Y, Lee JD, Eskandarian A (2003) Int J Eng Sci 41:61 51. Chen Y, Lee JD, Eskandarian A (2004) Int J Solids Struct 41:2085 52. Zang X, Sharma P, Johnsson HT (2007) Phys Rev B 75:155319 53. Nikolov S, Han CS, Rabbe D (2007) J Solids Struct 44:1582 J Mater Sci (2008) 43:6747–6757 6757 123
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有