正在加载图片...
黄运华等:高强度低合金钢中纳米析出相对腐蚀行为影响的研究进展 329· Alloy 600.Corrosion,2006,62(7):591 B.C.C.and F.C.C.crystals structures by the desorption thermal [16]Tan J B,Wu X Q,Han E H,et al.Role of TiN inclusion on analysis technique.SurfCoat Technol,1986,28(3-4):301 corrosion fatigue behavior of Alloy 690 steam generator tubes in [32]Dwivedi S K,Vishwakarma M.Effect of hydrogen in advanced borated and lithiated high temperature water.Corros Sci,2014,88 high strength steel materials.Int J Hydrogen Energy,2019, 349 44(51):28007 [17]Duan X G,Cai Q W,Wu H B.Ti-Mo ferrite matrix micro-alloy [33]Chu W Y.Qiao L J.Li J X,et al.Hydrogen Embrittle and Stress steel with nanometer-sized precipitates.Acta Metall Sin,2011, Corrosion Cracking-Basic Part.Beijing:Science Press,2013 47(2):251 (褚武扬,乔利杰,李金许,等.氢脆和应力腐蚀-基础部分.北京: (段修刚,蔡庆伍,武会宾.T-Mo全铁素体基微合金高强钢纳米 科学出版社,2013) 尺度析出相.金属学报,2011,47(2):251) [34]Robertson W M,Thompson A W.Permeation measurements of [18]Chen CY,Chen S F.Chen CC,et al.Control of precipitation hydrogen trapping in 1045 steel.Metall Trans ,1980,11(4):553 morphology in the novel HSLA steel.Mater Sci Eng 4,2015,634: [35]Liu MA,Rivera-Diaz-del-Castillo P E J,Barraza-Fierroa J I,et al. 123 Microstructural influence on hydrogen permeation and trapping in [19]Xie Z J,Ma X P,Shang C J,et al.Nano-sized precipitation and steels.Mater Des,2019,167:107605 properties of a low carbon niobium micro-alloyed bainitic steel. [36]Wallaert E,Depover T,Arafin M,et al.Thermal desorption Mater Sci Eng A,2015,641:37 spectroscopy evaluation of the hydrogen-trapping capacity of NbC [20]Meng F J,Wang J Q,Han E H,et al.The role of TiN inclusions in and NbN precipitates.Metall Mater Trans A,2014,45(5):2412 stress corrosion crack initiation for Alloy 690TT in high- [37]Pressouyre G M,Bernstein I M.A quantitative analysis of temperature and high-pressure water.Corros Sci,2010,52(3):927 hydrogen trapping.Metall Trans 4,1978,9(11):1571 [21]Rahnama A,Clark S,Sridhar S.Machine learning for predicting [38]Pressouyre G M,Bernstein I M.An example of the effect of occurrence of interphase precipitation in HSLA steels.Compu hydrogen trapping on hydrogen embrittlement.Metall Trans A, Mater Sci,2018,154:169 1981,12(5):835 [22]Chang S H,Yeh P T,Huang K T.Microstructures,mechanical [39]Restrepo S E,Stefano DD,Mrovec M,et al.Density functional properties and corrosion behaviors of NbC added to Vanadis 4 tool theory calculations of iron-vanadium carbide interfaces and the steel via vacuum sintering and heat treatments.Vacuum,2017, effect of hydrogen.IntJ Hydrogen Energy,2020,45(3):2382 142:123 [40]Ma Y,Shi Y F,Wang H Y,et al.A first-principles study on the [23]Zhang SQ,Fan ED.Wan JF,et al.Effect of Nb on the hydrogen- hydrogen trap characteristics of coherent nano-precipitates in a-Fe. induced cracking of high-strength low-alloy steel.Corros Sci IntJ Hydrogen Energ,2020,45(51):27941 2018.139:83 [41]Wei J,Dong J H,Ke W,et al.Influence of inclusions on early [24]Zuo L F,Ni R.Wang ZD.et al.Nano-precipitates in low carbon corrosion development of ultra-low carbon bainitic steel in NaCl high strength steel during thr tempering process.J Iron Steel Res solution.Corrosion,2015,71(12):1467 2013,25(3):39 [42]Avci R,Davis B H,Wolfenden M L,et al.Mechanism of MnS- (左龙飞,倪锐,王自东,等.低碳高强钢中纳米析出相回火过程 mediated pit initiation and propagation in carbon steel in an 中的透射分析.钢铁研究学报,2013,25(3):39) anaerobic sulfidogenic media.Corros Sci,2013,76:267 [25]Yong Q L.Second Phases in Structural Steels.Beijing:Metallu- [43]Lee J,Lee T,Mun D J,et al.Comparative study on the effects of rgical Industry Press,2006 Cr,V,and Mo carbides for hydrogen-embrittlement resistance of (雍岐龙.钢铁材料中的第二相.北京:冶金工业出版社,2006) tempered martensitic steel.Sci Rep,2019,9:5219 [26]Grabke H J,Riecke E.Absorption and diffusion of hydrogen in [44]Wei F G,Tsuzaki K.Quantitative analysis on hydrogen trapping of steels.Mater Tehnol,2000,34(6):331 TiC particles in steel.Metall Mater Trans 4,2006,37(2):331 [27]Sojka J,Vodarek V,Schindler I,et al.Effect of hydrogen on the [45]Sawada H,Taniguchi S,Kawakami K,et al.Transition of the properties and fracture characteristics of TRIP 800 steels.Corros interface between iron and carbide precipitate from coherent to Sci,2011,53(8):2575 semi-coherent.Metals,2017,7(7):277 [28]Grabke H J,Gehrmann F,Riecke E.Hydrogen in microalloyed [46]Wei F G,Hara T,Tsuzaki K.Nano-preciptates design with steels.Steel Res Int,2001,72(5-6):225 hydrogen trapping character in high strength steel/lAdvanced [29]Ghosh G,Rostron P,Garg R,et al.Hydrogen induced cracking of Steels.Berlin:Springer-Verlag Berlin Heidelberg and pipeline and pressure vessel steels:A review.Eng Fract Mech, Metallurgical Industry Press,2011 2018.199:609 [47]Shi R J,Ma Y,Wang Z D,et al.Atomic-scale investigation of [30]Stefano DD,Mrovec M,Elsasser C.First-principles investigation deep hydrogen trapping in NbC/a-Fe semi-coherent interfaces. of quantum mechanical effects on the diffusion of hydrogen in iron Acta Mater,2020,200:686 and nickel.Phys Rev B,2015,92:224301 [48]Lin Y C,McCarroll I E,Lin Y T,et al.Hydrogen trapping and [31]Lee J Y,Lee S M.Hydrogen trapping phenomena in metals with desorption of dual precipitates in tempered low-carbon martensiticAlloy 600. Corrosion, 2006, 62(7): 591 Tan  J  B,  Wu  X  Q,  Han  E  H,  et  al.  Role  of  TiN  inclusion  on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water. Corros Sci, 2014, 88: 349 [16] Duan X G, Cai Q W, Wu H B. Ti‒Mo ferrite matrix micro-alloy steel  with  nanometer-sized  precipitates. Acta Metall Sin,  2011, 47(2): 251 (段修刚, 蔡庆伍, 武会宾. Ti‒Mo全铁素体基微合金高强钢纳米 尺度析出相. 金属学报, 2011, 47(2):251) [17] Chen  C  Y,  Chen  S  F,  Chen  C  C,  et  al.  Control  of  precipitation morphology in the novel HSLA steel. Mater Sci Eng A, 2015, 634: 123 [18] Xie Z J, Ma X P, Shang C J, et al. Nano-sized precipitation and properties  of  a  low  carbon  niobium  micro-alloyed  bainitic  steel. Mater Sci Eng A, 2015, 641: 37 [19] Meng F J, Wang J Q, Han E H, et al. The role of TiN inclusions in stress  corrosion  crack  initiation  for  Alloy  690TT  in  high￾temperature and high-pressure water. Corros Sci, 2010, 52(3): 927 [20] Rahnama  A,  Clark  S,  Sridhar  S.  Machine  learning  for  predicting occurrence  of  interphase  precipitation  in  HSLA  steels. Comput Mater Sci, 2018, 154: 169 [21] Chang  S  H,  Yeh  P  T,  Huang  K  T.  Microstructures,  mechanical properties and corrosion behaviors of NbC added to Vanadis 4 tool steel via vacuum  sintering  and  heat  treatments. Vacuum,  2017, 142: 123 [22] Zhang S Q, Fan E D, Wan J F, et al. Effect of Nb on the hydrogen￾induced  cracking  of  high-strength  low-alloy  steel. Corros Sci, 2018, 139: 83 [23] Zuo L F, Ni R, Wang Z D, et al. Nano-precipitates in low carbon high strength steel during thr tempering process. J Iron Steel Res, 2013, 25(3): 39 (左龙飞, 倪锐, 王自东, 等. 低碳高强钢中纳米析出相回火过程 中的透射分析. 钢铁研究学报, 2013, 25(3):39) [24] Yong Q L. Second Phases in Structural Steels. Beijing: Metallu￾rgical Industry Press, 2006 (雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006) [25] Grabke  H  J,  Riecke  E.  Absorption  and  diffusion  of  hydrogen  in steels. Mater Tehnol, 2000, 34(6): 331 [26] Sojka J, Vodárek V, Schindler I, et al. Effect of hydrogen on the properties and fracture characteristics of TRIP 800 steels. Corros Sci, 2011, 53(8): 2575 [27] Grabke  H  J,  Gehrmann  F,  Riecke  E.  Hydrogen  in  microalloyed steels. Steel Res Int, 2001, 72(5-6): 225 [28] Ghosh G, Rostron P, Garg R, et al. Hydrogen induced cracking of pipeline  and  pressure  vessel  steels:  A  review. Eng Fract Mech, 2018, 199: 609 [29] Stefano D D, Mrovec M, Elsässer C. First-principles investigation of quantum mechanical effects on the diffusion of hydrogen in iron and nickel. Phys Rev B, 2015, 92: 224301 [30] [31] Lee J Y, Lee S M. Hydrogen trapping phenomena in metals with B. C. C. and F. C. C. crystals structures by the desorption thermal analysis technique. Surf Coat Technol, 1986, 28(3-4): 301 Dwivedi  S  K,  Vishwakarma  M.  Effect  of  hydrogen  in  advanced high  strength  steel  materials. Int J Hydrogen Energy,  2019, 44(51): 28007 [32] Chu W Y, Qiao L J, Li J X, et al. Hydrogen Embrittle and Stress Corrosion Cracking‒Basic Part. Beijing: Science Press, 2013 (褚武扬, 乔利杰, 李金许, 等. 氢脆和应力腐蚀‒基础部分. 北京: 科学出版社, 2013) [33] Robertson  W  M,  Thompson  A  W.  Permeation  measurements  of hydrogen trapping in 1045 steel. Metall Trans A, 1980, 11(4): 553 [34] Liu M A, Rivera-Díaz-del-Castillo P E J, Barraza-Fierroa J I, et al. Microstructural influence on hydrogen permeation and trapping in steels. Mater Des, 2019, 167: 107605 [35] Wallaert  E,  Depover  T,  Arafin  M,  et  al.  Thermal  desorption spectroscopy evaluation of the hydrogen-trapping capacity of NbC and NbN precipitates. Metall Mater Trans A, 2014, 45(5): 2412 [36] Pressouyre  G  M,  Bernstein  I  M.  A  quantitative  analysis  of hydrogen trapping. Metall Trans A, 1978, 9(11): 1571 [37] Pressouyre  G  M,  Bernstein  I  M.  An  example  of  the  effect  of hydrogen  trapping  on  hydrogen  embrittlement. Metall Trans A, 1981, 12(5): 835 [38] Restrepo  S  E,  Stefano  D  D,  Mrovec  M,  et  al.  Density  functional theory  calculations  of  iron ‒vanadium  carbide  interfaces  and  the effect of hydrogen. Int J Hydrogen Energy, 2020, 45(3): 2382 [39] Ma Y, Shi Y F, Wang H Y, et al. A first-principles study on the hydrogen trap characteristics of coherent nano-precipitates in α-Fe. Int J Hydrogen Energ, 2020, 45(51): 27941 [40] Wei  J,  Dong  J  H,  Ke  W,  et  al.  Influence  of  inclusions  on  early corrosion  development  of  ultra-low  carbon  bainitic  steel  in  NaCl solution. Corrosion, 2015, 71(12): 1467 [41] Avci R, Davis B H, Wolfenden M L, et al. Mechanism of MnS￾mediated  pit  initiation  and  propagation  in  carbon  steel  in  an anaerobic sulfidogenic media. Corros Sci, 2013, 76: 267 [42] Lee J, Lee T, Mun D J, et al. Comparative study on the effects of Cr, V, and Mo carbides for hydrogen-embrittlement resistance of tempered martensitic steel. Sci Rep, 2019, 9: 5219 [43] Wei F G, Tsuzaki K. Quantitative analysis on hydrogen trapping of TiC particles in steel. Metall Mater Trans A, 2006, 37(2): 331 [44] Sawada  H,  Taniguchi  S,  Kawakami  K,  et  al.  Transition  of  the interface  between  iron  and  carbide  precipitate  from  coherent  to semi-coherent. Metals, 2017, 7(7): 277 [45] Wei  F  G,  Hara  T,  Tsuzaki  K.  Nano-preciptates  design  with hydrogen  trapping  character  in  high  strength  steel//Advanced Steels.  Berlin:  Springer-Verlag  Berlin  Heidelberg  and Metallurgical Industry Press, 2011 [46] Shi  R  J,  Ma  Y,  Wang  Z  D,  et  al.  Atomic-scale  investigation  of deep  hydrogen  trapping  in  NbC/α-Fe  semi-coherent  interfaces. Acta Mater, 2020, 200: 686 [47] Lin  Y  C,  McCarroll  I  E,  Lin  Y  T,  et  al.  Hydrogen  trapping  and desorption of dual precipitates in tempered low-carbon martensitic [48] 黄运华等: 高强度低合金钢中纳米析出相对腐蚀行为影响的研究进展 · 329 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有