MPI CART CREATE -1,0(4)-1,1/5) Each of the above two 2D cases may be viewed 0-1(-1)000)01(1)02(1) graphically as a cylinder; the periodic dimension forms the 11()1,0(2)1,1(3)121) circumferential surface while the non-periodic dimension 2-1(-1)2.0{4)2,1(5)22(-1) runs parallel to the cylindrical 30(0)31(1) axIs If both dimensions are periodic, Figure 8.1(b) periods[0]F1, periods[1]=0 the grid resembles a torus. the effects of periodic columns and 1,0(-1)-11(-1) periodic rows are depicted in Figures 8. 1(b)and( c) 0-1(1)000)01(102(0) respectively. The tan-colored cells indicate cyclic boundary 1-1(3)10(2)11(3)12(2) condition in effect 2-1(5)2042.1(5224 30(-1)3,1(-1) Figure 8.1().periods[O]=0; periods[1]=1MPI_CART_CREATE • Each of the above two 2D cases may be viewed graphically as a cylinder; the periodic dimension forms the circumferential surface while the non-periodic dimension runs parallel to the cylindrical axis. • If both dimensions are periodic, the grid resembles a torus. The effects of periodic columns and periodic rows are depicted in Figures 8.1 (b) and (c), respectively. The tan-colored cells indicate cyclic boundary condition in effect. -1,0 (4) -1,1 (5) 0,-1(-1) 0,0 (0) 0,1 (1) 0,2(-1) 1,-1(-1) 1,0 (2) 1,1 (3) 1,2(-1) 2,-1(-1) 2,0 (4) 2,1 (5) 2,2(-1) 3,0 (0) 3,1 (1) Figure 8.1 (b). periods[0]=1;periods[1]=0 -1,0 (-1) -1,1 (-1) 0,-1(1) 0,0 (0) 0,1 (1) 0,2(0) 1,-1(3) 1,0 (2) 1,1 (3) 1,2(2) 2,-1(5) 2,0 (4) 2,1 (5) 2,2(4) 3,0 (-1) 3,1 (-1) Figure 8.1 (c). periods[0]=0;periods[1]=1