正在加载图片...
第6期 衣淳植,等:下肢外骨酪研究进展及关节运动学解算综述 ·887· gies[C]//Proceedings of 2005 IEEE International Confer- 1228-1239 ence Mechatronics and Automation.Niagara Falls,Ont., [45]KONG K,JEON D.Design and control of an exoskelet- Canada.2005:1099-1106. on for the elderly and patients[J].IEEE/ASME transac- [32]ONISHI T.ARAI T.INOUE K,et al.Development of the tions on mechatronics,2006.11(4):428-432. basic structure for an exoskeleton cyborg system[J].Arti- [46]MORI Y.TAKAYAMA K,NAKAMURA T.Develop- ficial life and robotics,2003,7(3):95-101. ment of straight style transfer equipment for lower limbs [33]法国RB3D公司.http:www.rb3d.com/en/[Z☑.2018 disabled[C]//Proceedings of 2004 IEEE International [34]KOSSO E V.A minimum energy exoskeleton[C]//Pro- Conference on Robotics and Automation.New Orleans, ceedings of Carnahan Conference on Electronic Prosthet- LA.USA.2004:2486-2491. ics.Carnahan,UK,1973:86-89. [47]HARTIGAN C,KANDILAKIS C,DALLEY S,et al. [35]PRATT J E,KRUPP B T,MORSE C J,et al.The Mobility outcomes following five training sessions with a RoboKnee:an exoskeleton for enhancing strength and en- powered exoskeleton[J].Topics in spinal cord injury re- durance during walking[C]//Proceedings of 2004 IEEE habilitation,2015,21(2):93-99 International Conference on Robotics and Automation. [48]QUINTERO H A,FARRIS R J,HARTIGAN C,et al.A New Orleans,LA,USA,2004:2430-2435. powered lower limb orthosis for providing legged mobil- [36]PIETRO F.Device for the automatic control of the articu- ity in paraplegic individuals[J].Topics in spinal cord in- lation of the knee applicable to a prothesis of the thigh[P]. jury rehabilitation,2011,17(1):25-33. US:2305291,1942-12-15 [49]SEEL T,SCHAUER T,RAISCH J.Joint axis and posi- [37]WALSH C J,ENDO K,HERR H.A quasi-passive leg tion estimation from inertial measurement data by exploit- exoskeleton for load-carrying augmentation[J.Interna- ing kinematic constraints[C]//Proceedings of 2012 IEEE tional journal of humanoid robotics,2007,4(3):487-506. International Conference on Control Applications. [38]GREGORCZYK K N,OBUSEK J P,HASSELQUIST L, Dubrovnik,Croatia,2012:45-49 et al.The effects of a lower body exoskeleton load car- [50]LAIDIG D,MULLER P,SEEL T.Automatic anatomical riage assistive device on oxygen consumption and kin- calibration for IMU-based elbow angle measurement in ematics during walking with loads[J].2006. disturbed magnetic fields[J].Current directions in bio- [39]JANSEN J F.BIRDWELL J F,BOYNTON A C,et al. medical engineering,2017,3(2):167-170. Phase I report DARPA Exoskeleton Program[Z].2003. [51]DEL-AMA A J,MORENO J C,GIL-AGUDO A,et al. [40]COLLINS S H,WIGGIN M B,SAWICKI G S.Redu- Online assessment of human-robot interaction for hybrid cing the energy cost of human walking using an un- control of walking[J].Sensors,2012,12(1):215-225. powered exoskeleton[J].Nature,2015,522(7555): [52]DEL-AMA A J,GIL-AGUDO A,PONS J L,et al.Hy- 212-215. brid gait training with an overground robot for people [41]GRIMMER M,ESLAMY M,GLIECH S,et al.A com- with incomplete spinal cord injury:a pilot study[J]. parison of parallel-and series elastic elements in an actu- Forntiers in human neuroscience,2014,8:298 ator for mimicking human ankle joint in walking and run- [53]HOLLANDER K W,ILG R,SUGAR T G,et al.An effi- ning[C]//Proceedings of 2012 IEEE International Confer- cient robotic tendon for gait assistance[J].Journal of bio- ence on Robotics and Automation.Saint Paul,MN,USA. mechanical engineering,2006,128(5):788-791. 2012:2463-2470 [54]BHARADWAJK.SUGAR T G.KOENEMAN J B,et al. [42]VUKOBRATOVIC M,BOROVA B,SURLA D,et al. Design of a robotic gait trainer using spring over muscle Scientific fundamentals of robotics 7:biped locomotion, actuators for ankle stroke rehabilitation[J].Journal of bio- dynamics,stability,control and application[M].New mechanical engineering,2005,127(6):1009-1013. York:Springer Verlag.1990. [55]AGRAWAL A.BANALA S K,AGRAWAL S K,et al. [43]STRAUSSER K A,KAZEROONI H.The development Design of a two degree-of-freedom ankle-foot orthosis for and testing of a human machine interface for a mobile robotic rehabilitation[Cl//Proceedings of the 9th Interna- medical exoskeleton[C]//Proceedings of 2011 IEEE/RSJ tional Conference on Rehabilitation Robotics.Chicago, International Conference on Intelligent Robots and Sys- IL,USA,2005:4144. tems.San Francisco,CA.USA.2011:4911-4916. [56]NIKITCZUK J,WEINBERG B,MAVROIDIS C.Re- [44]BANALA S K,AGRAWAL S K,FATTAH A,et al. hAbilitative knee orthosis driven by electro-rheological Gravity-balancing leg orthosis and its performance evalu- fluid based actuators[C]//Proceedings of 2005 IEEE Inter- ation[J].IEEE transactions on robotics,2006,22(6): national Conference on Robotics and Automation.Bar-gies[C]//Proceedings of 2005 IEEE International Confer￾ence Mechatronics and Automation. Niagara Falls, Ont., Canada, 2005: 1099–1106. ONISHI T, ARAI T, INOUE K, et al. Development of the basic structure for an exoskeleton cyborg system[J]. Arti￾ficial life and robotics, 2003, 7(3): 95–101. [32] [33] 法国 RB3D 公司. http://www.rb3d.com/en/[Z]. 2018 KOSSO E V. A minimum energy exoskeleton[C]//Pro￾ceedings of Carnahan Conference on Electronic Prosthet￾ics. Carnahan, UK, 1973: 86–89. [34] PRATT J E, KRUPP B T, MORSE C J, et al. The RoboKnee: an exoskeleton for enhancing strength and en￾durance during walking[C]//Proceedings of 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, USA, 2004: 2430–2435. [35] PIETRO F. Device for the automatic control of the articu￾lation of the knee applicable to a prothesis of the thigh[P]. US: 2305291, 1942-12-15. [36] WALSH C J, ENDO K, HERR H. A quasi-passive leg exoskeleton for load-carrying augmentation[J]. Interna￾tional journal of humanoid robotics, 2007, 4(3): 487–506. [37] GREGORCZYK K N, OBUSEK J P, HASSELQUIST L, et al. The effects of a lower body exoskeleton load car￾riage assistive device on oxygen consumption and kin￾ematics during walking with loads[J]. 2006. [38] JANSEN J F, BIRDWELL J F, BOYNTON A C, et al. Phase I report DARPA Exoskeleton Program[Z]. 2003. [39] COLLINS S H, WIGGIN M B, SAWICKI G S. Redu￾cing the energy cost of human walking using an un￾powered exoskeleton[J]. Nature, 2015, 522(7555): 212–215. [40] GRIMMER M, ESLAMY M, GLIECH S, et al. A com￾parison of parallel- and series elastic elements in an actu￾ator for mimicking human ankle joint in walking and run￾ning[C]//Proceedings of 2012 IEEE International Confer￾ence on Robotics and Automation. Saint Paul, MN, USA, 2012: 2463–2470. [41] VUKOBRATOVIC M, BOROVA B, SURLA D, et al. Scientific fundamentals of robotics 7: biped locomotion, dynamics, stability, control and application[M]. New York: Springer Verlag, 1990. [42] STRAUSSER K A, KAZEROONI H. The development and testing of a human machine interface for a mobile medical exoskeleton[C]//Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Sys￾tems. San Francisco, CA, USA, 2011: 4911–4916. [43] BANALA S K, AGRAWAL S K, FATTAH A, et al. Gravity-balancing leg orthosis and its performance evalu￾ation[J]. IEEE transactions on robotics, 2006, 22(6): [44] 1228–1239. KONG K, JEON D. Design and control of an exoskelet￾on for the elderly and patients[J]. IEEE/ASME transac￾tions on mechatronics, 2006, 11(4): 428–432. [45] MORI Y, TAKAYAMA K, NAKAMURA T. Develop￾ment of straight style transfer equipment for lower limbs disabled[C]//Proceedings of 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, USA, 2004: 2486–2491. [46] HARTIGAN C, KANDILAKIS C, DALLEY S, et al. Mobility outcomes following five training sessions with a powered exoskeleton[J]. Topics in spinal cord injury re￾habilitation, 2015, 21(2): 93–99. [47] QUINTERO H A, FARRIS R J, HARTIGAN C, et al. A powered lower limb orthosis for providing legged mobil￾ity in paraplegic individuals[J]. Topics in spinal cord in￾jury rehabilitation, 2011, 17(1): 25–33. [48] SEEL T, SCHAUER T, RAISCH J. Joint axis and posi￾tion estimation from inertial measurement data by exploit￾ing kinematic constraints[C]//Proceedings of 2012 IEEE International Conference on Control Applications. Dubrovnik, Croatia, 2012: 45–49. [49] LAIDIG D, MÜLLER P, SEEL T. Automatic anatomical calibration for IMU-based elbow angle measurement in disturbed magnetic fields[J]. Current directions in bio￾medical engineering, 2017, 3(2): 167–170. [50] DEL-AMA A J, MORENO J C, GIL-AGUDO À, et al. Online assessment of human-robot interaction for hybrid control of walking[J]. Sensors, 2012, 12(1): 215–225. [51] DEL-AMA A J, GIL-AGUDO Á, PONS J L, et al. Hy￾brid gait training with an overground robot for people with incomplete spinal cord injury: a pilot study[J]. Forntiers in human neuroscience, 2014, 8: 298. [52] HOLLANDER K W, ILG R, SUGAR T G, et al. An effi￾cient robotic tendon for gait assistance[J]. Journal of bio￾mechanical engineering, 2006, 128(5): 788–791. [53] BHARADWAJ K, SUGAR T G, KOENEMAN J B, et al. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation[J]. Journal of bio￾mechanical engineering, 2005, 127(6): 1009–1013. [54] AGRAWAL A, BANALA S K, AGRAWAL S K, et al. Design of a two degree-of-freedom ankle-foot orthosis for robotic rehabilitation[C]//Proceedings of the 9th Interna￾tional Conference on Rehabilitation Robotics. Chicago, IL, USA, 2005: 41–44. [55] NIKITCZUK J, WEINBERG B, MAVROIDIS C. Re￾hAbilitative knee orthosis driven by electro-rheological fluid based actuators[C]//Proceedings of 2005 IEEE Inter￾national Conference on Robotics and Automation. Bar- [56] 第 6 期 衣淳植,等:下肢外骨骼研究进展及关节运动学解算综述 ·887·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有