正在加载图片...
基本证明方式(3 A∩B=A→A-B=b: A-B=b→A∩B=A: 利用已知恒等式或等 A⌒B=(A△BL 口例:AOB=A令A-B= =A AU(AOB B=O⊕B =(A⊕A)⊕B 口例:AUAB)=A =A⌒(E =A⊕(A⊕B) 口例:已知A⊕B=A①C,证明B=C =A⊕(A⊕C) 口一个比较复杂的代入的例子: =C 利用A∩B=A台AcB证明: (AUBUC)∩(AUB)-(AU(B-C)⌒A)=B-A (AUBOC)⌒(AUB)=(AUB) (AU(B-C)∩A)=A,s0原式左边=(AUB)-A=B-A基本证明方式(3) ◼ 利用已知恒等式或等式作集合代数推演 ❑ 例:AB=A  A-B= ❑ 例:A(AB) = A ❑ 例:已知AB=AC, 证明B=C ❑ 一个比较复杂的代入的例子: ◼ 利用A B=A  AB证明: ((ABC)  (AB))-((A(B-C)) A)=B-A AB=AA-B=: A-B = AB = (AB)(AA) = A(BA) = A(AB) = AA =  A-B=AB=A: AB=(AB)(AB) =A(BB)=AE=A (ABC)  (AB)= (AB) (A(B-C)) A)=A, so 原式左边=(AB)-A=B-A A(AB)=(AE) (AB) = A(EB) = AE = A B=ØB =(AA)B =A(AB) =A(AC) =C
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有