正在加载图片...
实验十五 Using the computer in biochemical research I. Introduction and theory The modern computer has revolutionized the way we live. Not surprisingly, the computer has also changed the way we do biochemical research. Your first encounter with a computer in this laboratory will probably be while using an instrument that has a computer to control its operation, to collect data, and to analyze data. All major pieces of scientific quipment including UV-VIs spectrometers, high-performance liquid chromatographs, gas chromatographs, nuclear magnetic resonance spectrometers, and DNA sequencers are now controlled by computers. But your use of the computer will not end in the lab. You will use a computer to prepare each laboratory report including graphical analysis of experimental data. If the computer is connected to the Internet, you will greatly broaden its use to some of the following: (1) searching the biochemical literature for pertinent books and journal articles and(2)accessing biological databases that provide nucleic acid and protein sequences and protein structures. Personal computing in biochemistry It is now possible for most students to purchase a basic computer system at low cost. Some recommendations for specific hardware and software will be given here but one must be aware that new products and important upgrades are continually being developed For word processing( writing lab reports), basic software programs including Microsoft Word and Word Perfect are most widely used. Software specialized for scientific writing is available but probably not necessary at this level. For many experiments that you complete, you will need to present data in a spreadsheet or graphing or spreadsheet with graphing capability include Lotus, Excel, Sigmaplot, Quattropro, Kaleidagraph, and Cricket Craph. Some graphs that you prepare from experimental data will be nonlinear. The most common example is a Michaelis-Menten graph from enzyme kinetics studies(substrate concentration vS. reaction rate). Since most computers and programs have different methods for dealing with nonlinearity, it is probably best not to connect the data points with a line. Rather, use a curve-fitting routine to get the appropriate line. Alternatively, one could analyze the data using a straight-line method such as the Lineweaver-Burk plot294 实验十五 Using the computer in biochemical research Ⅰ. Introduction and theory The modern computer has revolutionized the way we live. Not surprisingly, the computer has also changed the way we do biochemical research. Your first encounter with a computer in this laboratory will probably be while using an instrument that has a computer to control its operation, to collect data, and to analyze data. All major pieces of scientific equipment including UV-VIS spectrometers, high-performance liquid chromatographs, gas chromatographs, nuclear magnetic resonance spectrometers, and DNA sequencers are now controlled by computers. But your use of the computer will not end in the lab. You will use a computer to prepare each laboratory report including graphical analysis of experimental data. If the computer is connected to the Internet, you will greatly broaden its use to some of the following: (1) searching the biochemical literature for pertinent books and journal articles and (2) accessing biological databases that provide nucleic acid and protein sequences and protein structures. Personal computing in biochemistry It is now possible for most students to purchase a basic computer system at low cost. Some recommendations for specific hardware and software will be given here, but one must be aware that new products and important upgrades are continually being developed. For word processing(writing lab reports), basic software programs including Microsoft Word and Word Perfect are most widely used. Software specialized for scientific writing is available but probably not necessary at this level. For many experiments that you complete, you will need to present data in a spreadsheet or graphing or spreadsheet with graphing capability include Lotus, Excel, Sigmaplot, Quattropro, Kaleidagraph, and CricketCraph. Some graphs that you prepare from experimental data will be nonlinear. The most common example is a Michaelis-Menten graph from enzyme kinetics studies(substrate concentration vs. reaction rate). Since most computers and programs have different methods for dealing with nonlinearity, it is probably best not to connect the data points with a line. Rather, use a curve-fitting routine to get the appropriate line. Alternatively, one could analyze the data using a straight-line method such as the Lineweaver-Burk plot
向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有