正在加载图片...
宋仁伯等:Fe-M-Al-C系中锰钢的研究现状与发展前景 827 0.7)C-3Mn-5Al lightweight steels.Met Mater Int,2015,21(1): in the Fe-Al-C system.Intermetallics,1995,3(6):443 43 [74]Kimura Y,Handa K,Hayashi K,et al.Microstructure control and [59]Xu R C,He YL,Jiang H,et al.Microstructures and mechanical ductility improvement of the two-phase y-Fe/k-(Fe,Mn)AIC properties of ferrite-based lightweight steel with different alloys in the Fe-Mn-Al-C quaternary system.Intermetallics, compositions.J Iron Steel Res Int,2017,24(7):737 2004.12(6):607 [60]Sohn S S,Lee B J,Lee S,et al.Effect of annealing temperature on [75]Huang H,Gan D,Kao P W.Effect of alloying additions on the K microstructural modification and tensile properties in phase precipitation in austenitic Fe-Mn-Al-C alloys.Scripta 0.35C-3.5Mn-5.8Al lightweight steel.Acta Mater,2013,61(13): Metall Mater,.1994,30(4):499 5050 [76]Li M C,Chang H,Kao P W,et al.The effect of Mn and Al [61]Song H,Lee S G,Sohn SS,et al.Effect of strain-induced age contents on the solvus of k phase in austenitic Fe-Mn-Al-C hardening on yield strength improvement in ferrite-austenite alloys.Mater Chem Phys,1999,59(1):96 duplex lightweight steels.Metall Mater Trans A.2016.47(11): [77]Ishida K,Ohtani H,Satoh N,et al.Phase Equilibria in 5372 Fe-Mn-Al-C Alloys.IS/J Int,1990,30(8):680 [62]Sohn SS,Choi K,Kwak J H,et al.Novel ferrite-austenite duplex [78]Chin K G,Lee K J,Kwak J H,et al.Thermodynamic calculation lightweight steel with 77%ductility by transformation induced on the stability of(Fe,Mn)AIC carbide in high aluminum steels.J plasticity and twinning induced plasticity mechanisms.Acta Mater, 4 lloys Compd,2010,505(1):217 2014,78:181 [79]Bale C W,Belisle E,Chartrand P,et al.FactSage thermochemical [63]Seo C H,Kwon K H,Choi K,et al.Deformation behavior of software and databases-recent developments.Calphad,2009, ferrite-austenite duplex lightweight Fe-Mn-Al-C steel.Scripra 33(2):295 Maer,2012.66(8):519 [80]Allain S,Chateau J P,Bouaziz O,et al.Correlations between the [64]Sohn SS.Song H,Kim JG.et al.Effects of annealing treatment calculated stacking fault energy and the plasticity mechanisms in prior to cold rolling on delayed fracture properties in ferrite- Fe-Mn-C alloy.Mater Sci Eng A,2004,387-389:158 austenite duplex lightweight steels.Merall Mater Trans 4,2016. [81]Lee S,Estrin Y,De Cooman B C.Effect of the strain rate on the 47(2):706 TRIP-TWIP transition in austenitic Fe-12 pct Mn-0.6 pct C TWIP [65]Sohn S S,Lee S,Lee B J,et al.Microstructural developments and steel.Metall Mater Trans A,2014,45(2):717 tensile properties of lean Fe-Mn-Al-C lightweight steels.JOM [82]Pierce D T.Jimenez J A,Bentley J,et al.The influence of 2014,66(9):1857 manganese content on the stacking fault and austenite/c-martensite [66]Park J,Jo M C,Jeong H J,et al.Interpretation of dynamic tensile interfacial energies in Fe-Mn-Al-Si)steels investigated by behavior by austenite stability in ferrite-austenite duplex experiment and theory.Acta Mater,2014,68:238 lightweight steels.Sci Rep,2017,7:15726 [83]Lee Y K,Choi C.Driving force for y martensitic [67]Sohn SS.Song H,Kwak J H,et al.Dramatic improvement of transformation and stacking fault energy of y in Fe-Mn binary strain hardening and ductility to95%in highly-deformable high- system.Metall Mater Trans A,2000,31(2):355 strength duplex lightweight steels.Sci Rep,2017,7:1927 [84]Zambrano O A.Stacking fault energy maps of Fe-Mn-Al-C [68]Song H,Sohn S,Kwak J H,et al.Effect of austenite stability on steels:effect of temperature,grain size,and variations in microstructural evolution and tensile properties in intercritically compositions.J Eng Mater Technol,2016,138(4):041010 annealed medium-Mn lightweight steels.Metall Mater Trans A, [85]Dumay A,Chateau J P,Allain S,et al.Influence of addition 2016,47(6):2674 elements on the stacking-fault energy and mechanical properties of [69]Lee S,Shin S,Kwon M,et al.Tensile properties of medium Mn an austenitic Fe-Mn-C steel.Mater Sci Eng A,2008,483-484:184 steel with a bimodal UFG a+y and Coarse 8-Ferrite microstructure. [86]Long C X.Mechanical Properties and Microstructure of Metall Mater Trans A,2017,48(4):1678 Fe-20Mn-2.6A1-2.6Si TRIP/TWIP SteelDissertation].Changsha: [70]Jeong J,Lee C Y,Park I J,et al.Isothermal precipitation behavior Hunan University,2012 of k-carbide in the Fe-9Mn-6Al-0.15C lightweight steel with a (龙彩霞.Fe-20Mn-2.6Al-2.6 Si TRIP/TWIP钢的力学性能和微 multiphase microstructure.JAlloys Compd,2013,574:299 观组织研究[学位论文].长沙:湖南大学,2012) [71]Lee S,Jeong J,Lee YK.Precipitation and dissolution behavior of [87]Haidemenopoulos G N,Vasilakos A N.On the thermodynamic K-carbide during continuous heating in Fe-9.3Mn-5.6Al-0.16C stability of retained austenite in 4340 steel.JAlloys Compd,1997, lightweight steel.J Alloys Compd,2015,648:149 247(1-2):128 [72]Chen S P,Rana R,Haldar A,et al.Current state of Fe-Mn-Al-C [88]Timokhina I B,Hodgson P D,Pereloma E V.Effect of low density steels.Prog Mater Sci,2017,89:345 microstructure on the stability of retained austenite in [73]Palm M,Inden G.Experimental determination of phase equilibria transformation-induced-plasticity steels.Metall Mater Trans A,0.7)C –3Mn –5Al lightweight steels. Met Mater Int, 2015, 21(1): 43 Xu R C, He Y L, Jiang H, et al. Microstructures and mechanical properties of ferrite-based lightweight steel with different compositions. J Iron Steel Res Int, 2017, 24(7): 737 [59] Sohn S S, Lee B J, Lee S, et al. Effect of annealing temperature on microstructural modification and tensile properties in 0.35C–3.5Mn–5.8Al lightweight steel. Acta Mater, 2013, 61(13): 5050 [60] Song H, Lee S G, Sohn S S, et al. Effect of strain-induced age hardening on yield strength improvement in ferrite-austenite duplex lightweight steels. Metall Mater Trans A, 2016, 47(11): 5372 [61] Sohn S S, Choi K, Kwak J H, et al. Novel ferrite-austenite duplex lightweight steel with 77% ductility by transformation induced plasticity and twinning induced plasticity mechanisms. Acta Mater, 2014, 78: 181 [62] Seo C H, Kwon K H, Choi K, et al. Deformation behavior of ferrite-austenite duplex lightweight Fe –Mn –Al –C steel. Scripta Mater, 2012, 66(8): 519 [63] Sohn S S, Song H, Kim J G, et al. Effects of annealing treatment prior to cold rolling on delayed fracture properties in ferrite￾austenite duplex lightweight steels. Metall Mater Trans A, 2016, 47(2): 706 [64] Sohn S S, Lee S, Lee B J, et al. Microstructural developments and tensile properties of lean Fe –Mn –Al –C lightweight steels. JOM, 2014, 66(9): 1857 [65] Park J, Jo M C, Jeong H J, et al. Interpretation of dynamic tensile behavior by austenite stability in ferrite-austenite duplex lightweight steels. Sci Rep, 2017, 7: 15726 [66] Sohn S S, Song H, Kwak J H, et al. Dramatic improvement of strain hardening and ductility to 95% in highly-deformable high￾strength duplex lightweight steels. Sci Rep, 2017, 7: 1927 [67] Song H, Sohn S S, Kwak J H, et al. Effect of austenite stability on microstructural evolution and tensile properties in intercritically annealed medium-Mn lightweight steels. Metall Mater Trans A, 2016, 47(6): 2674 [68] Lee S, Shin S, Kwon M, et al. Tensile properties of medium Mn steel with a bimodal UFG α+γ and Coarse δ-Ferrite microstructure. Metall Mater Trans A, 2017, 48(4): 1678 [69] Jeong J, Lee C Y, Park I J, et al. Isothermal precipitation behavior of κ-carbide in the Fe –9Mn –6Al –0.15C lightweight steel with a multiphase microstructure. J Alloys Compd, 2013, 574: 299 [70] Lee S, Jeong J, Lee Y K. Precipitation and dissolution behavior of κ-carbide during continuous heating in Fe –9.3Mn –5.6Al –0.16C lightweight steel. J Alloys Compd, 2015, 648: 149 [71] Chen S P, Rana R, Haldar A, et al. Current state of Fe–Mn–Al–C low density steels. Prog Mater Sci, 2017, 89: 345 [72] [73] Palm M, Inden G. Experimental determination of phase equilibria in the Fe–Al–C system. Intermetallics, 1995, 3(6): 443 Kimura Y, Handa K, Hayashi K, et al. Microstructure control and ductility improvement of the two-phase γ-Fe/κ-(Fe, Mn)3AlC alloys in the Fe –Mn –Al –C quaternary system. Intermetallics, 2004, 12(6): 607 [74] Huang H, Gan D, Kao P W. Effect of alloying additions on the κ phase precipitation in austenitic Fe –Mn –Al –C alloys. Scripta Metall Mater, 1994, 30(4): 499 [75] Li M C, Chang H, Kao P W, et al. The effect of Mn and Al contents on the solvus of κ phase in austenitic Fe –Mn –Al –C alloys. Mater Chem Phys, 1999, 59(1): 96 [76] Ishida K, Ohtani H, Satoh N, et al. Phase Equilibria in Fe–Mn–Al–C Alloys. ISIJ Int, 1990, 30(8): 680 [77] Chin K G, Lee K J, Kwak J H, et al. Thermodynamic calculation on the stability of (Fe, Mn)3AlC carbide in high aluminum steels. J Alloys Compd, 2010, 505(1): 217 [78] Bale C W, Belisle E, Chartrand P, et al. FactSage thermochemical software and databases-recent developments. Calphad, 2009, 33(2): 295 [79] Allain S, Chateau J P, Bouaziz O, et al. Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloy. Mater Sci Eng A, 2004, 387-389: 158 [80] Lee S, Estrin Y, De Cooman B C. Effect of the strain rate on the TRIP–TWIP transition in austenitic Fe–12 pct Mn–0.6 pct C TWIP steel. Metall Mater Trans A, 2014, 45(2): 717 [81] Pierce D T, Jiménez J A, Bentley J, et al. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe –Mn –(Al –Si) steels investigated by experiment and theory. Acta Mater, 2014, 68: 238 [82] Lee Y K, Choi C. Driving force for γ→ε martensitic transformation and stacking fault energy of γ in Fe –Mn binary system. Metall Mater Trans A, 2000, 31(2): 355 [83] Zambrano O A. Stacking fault energy maps of Fe –Mn –Al –C steels: effect of temperature, grain size, and variations in compositions. J Eng Mater Technol, 2016, 138(4): 041010 [84] Dumay A, Chateau J P, Allain S, et al. Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater Sci Eng A, 2008, 483-484: 184 [85] Long C X. Mechanical Properties and Microstructure of Fe–20Mn–2.6Al–2.6Si TRIP/TWIP Steel[Dissertation]. Changsha: Hunan University, 2012 (龙彩霞. Fe–20Mn–2.6Al–2.6Si TRIP/TWIP钢的力学性能和微 观组织研究[学位论文]. 长沙: 湖南大学, 2012) [86] Haidemenopoulos G N, Vasilakos A N. On the thermodynamic stability of retained austenite in 4340 steel. J Alloys Compd, 1997, 247(1-2): 128 [87] Timokhina I B, Hodgson P D, Pereloma E V. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels. Metall Mater Trans A, [88] 宋仁伯等: Fe−Mn−Al−C 系中锰钢的研究现状与发展前景 · 827 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有