正在加载图片...
J, Vicens et al./Aerospace Science and Technology 7(2003)135-146 m temperature structural applications. As it was de- [6]JJ. Brennan, Interfacial characterization of glass and glass-ceramic scribed in details in the last section, experience on BMAs atrix/Nicalon SiC fiber composites, Mater. Sci. Res. 20( 1986)549- matrices at UTRC is probably the most fruitful example to quantify the potential of the SiC-fibre reinforced glass- [7J.J. Brennan, Interface characteristics of glass-ceramic matrix/Sic ceramic composites in terms of durability at high temper fiber composites, J. Phys. (Suppl. )49-C5(1988)791-809 [8J.J. Brennan, Interfacial studies of fiber-reinforced ature in air. The mechanical properties and corresponding matrix composites, in: R. Naslain, J. Lamon, D Doum microstructural changes prove that the fibre coatings inhibit High Temperature Ceramic Matrix Composites, Woode interface degradation under most of stress and temperature imited, Abington/Cambridge, 1993, pp. 269-283 conditions used. The short and long term properties depends [9]JJ. Brennan, S.R. Nutt, E.Y. Sun, Interfacial microstructure and ability of BN-coated Nicalon fiber/glass-ceramic matrix composites, largely on the degree to which the interface microstructure is eram. Trans.58(1995)53-64 controlled by the Sic/Bn dual coating. The BN coating acts [10] B. Broquere, P. Spriet, M. Lacoste, J.C. Cavalier, Current and future as the key mechanical fuse function for the desired tough- ications of thermostructural composites in aerospace propulsion, ness. The SiC layer provides a barrier of diffusion and reac th European Conf. on Materials for Aerospace Applications, Paris- et, June 16-17, 1999 tion at high temperature. Further improvements in the perfor- [11] F. Christin, in: w. Krenkel, R. Naslain, H. Schneider(Eds ) High mance of the Sic/Bn coatings may be also possible. This ap- Temperature Ceramic Matrix Composites, HT-CMC4, Wiley-VCH proach in which each interfaces have a different function as Weinheim, Germany, 2001, pp 731-743 also shown in other CMCs is off great interest for the design [2] R.F. Cooper,K. Chyung, Structure and chemistry of the fibre- and control of interfaces for high temperature continuous- matrix interfaces in silicon carbide fibre-reinforced glass-ceramic fibre-reinforced composites 39]. That can explain why some composites: an electron microscopy study, J Mater. Sci. 22(1987) 3148-3160. aeronautical motorist companies test some parts in glass- [13]A M. Daniel, M.H. Lewis, Measurement of interfacial micron ceramic composites on their engines(for example the Trent cs in the fibre reinforced ceramic composites, Ceram. En 800 from Rolls-Royce, with SiC fibre-BMAS petals [2]) Proc.14(193)131-138 Some other applications are considered for parts working 14]F. Doreau, H. Maupas, D. Kervadec, P. Ruterana, J. Vicens, J.L. field 873-1073K Chermant, The complexity of the matrix microstructure in SiC-fiber reinforced glass ceramic composites, J. Eur. Ceram Soc. 15(1995) 1235-1247 [15] F. Doreau, Microstructure, morphologie et comportement en fluage de Acknowledgements composites SiC-YMAS unidirectionnels, These de Doctorat, Univer- sity of Caen, France, 1995. 16]. Droillard, Elaboration et caracterisation de composites a interphases Part of our experimental work has been performed in equencees PyC/SiC, These de Doctorat, University of bordeaux, the frame of the Groupement Scientifique GS 4C"Com France. 1993 portements thermomecaniques des composites ceramique- 7A. Hahnel, E. Pippel, J. Woltersdorf, Nanostructure of interlayers ceramique a fibres"supported by CNES, CNRS, DRET, different Nicalon fibre/glass matrix composites and their effect MRE, Aerospatiale, SEP and SNECMA companies, and un mechanical properties, J Microsc. 177(1995)264-271 18A. Hahnel, E. Pippel, R Schneider, J. Woltersdorf, D. Suttor, Forma der dRET contrat n92/1221. The authors want to warmly tion and structure of reaction layers in Sic/glass and SiC/SiC thank their colleagues dr. t. chartier and prof. c. gaul ites, Composites Part A 27A(1996)685-690. (ENSCL, Limoges, France)for fruitful discussions and col- [19] M Muta, J Gotoh, Development of high re materials in laborations concerning the Sic Nicalon/MLAS composites cluding CMCs for space application, Key Engineering Materials 164- 165(1999)439-444. Trans. Tech. Publications, Switzerland CSJ ing and dr. F. Doreau for his results Series-Publications of the Ceramic Society of Japan, Vol. 3 on SiCelYMAS o]S Jacques, A Guette, F. Langlais, R. Naslain, S. Goujard, Preparation and characterization of 2D-SiC/SiC composites with ded C(B) References 21]C. Laffon, A M. Flank, P. Lagarde, M. Laridjani, R. Hagege, P Olry, J. Cotteret, J. Dixmier, J. L. Miquel, H. Hommel, A P. Legrand, Study of Nicalon-based ceramic fibres and powders by EXAFS spectrometry [N P. Bansal, J.I. Eldridge, Effects of interface modification on mechan- netry and some additional methods, J. Mat. Sci. 24 ical behavior of Hi-Nicalon fiber-reinforced Celsian matrix compos- (1989)1503-1512 ites, Ceram. Eng. Sci. Proc. 18(3)(1997)379-389 222] M. Lancin, C Ponthieu, C. Marhic, M. Miloche, SIMS, EDX, EELS, 22]C P. Beesley, Applications of CMCs in high integrity gas turbine ES, XPS study of interphases in Nicalon fibre-LAS ngIne, Key Eng. Mat.127-131(1997)165-174 composites. Part I. Composition of the interphases, J. Mat. Sci. 29 3]PM. Benson, K.E. Spear, C.G. Pantano, Interfacial characterization of (1994)3759376 ass/Nicalon fiber composites: A thermodynamic approach, Ceram 23]BL. Laube, J.J. Brennan, Scanning Auger electron spectrocopy of Eng. Sci. Prod.9(1988)663-670 the fibre/matrix interface of SiC fiber/silicate glass matrix composites [4]S M. Bleay, V.D. Scott, B. Harris, R.G. Cooke, F.A. Habib, Interface Vac. Sci. Technol. A 81(1990)2096-2100 characterization and fracture of calcium aluminosilicate glass-ceramic 4]P Le Coustumer, M. Monthioux, A Oberlin, Understanding Nicalon einforced with Nicalon fibres, J. Mater. Sci. 27(1992)2811-2822 fiber, J. Eur. Ceram Soc. 11(1993)95-103 5]LA. Bonney, R F. Cooper, Reaction-layer interfaces in SiC-fiber- 25E. Le Strat, Interfaces de composites fibres SiC Nicalon 202/Matrice inforced glass-ceramics: a high resolution scanning transmission Pyrex: Correlations entre proprietes macroscopiques-mecaniques et electron microscopy study, J. Am. Ceram Soc. 73(10)(1990)2916- electromagnetiques et microscopiques, These de Doctorat, University 2921 of Paris vl france. 1997J. Vicens et al. / Aerospace Science and Technology 7 (2003) 135–146 145 medium temperature structural applications. As it was de￾scribed in details in the last section, experience on BMAS matrices at UTRC is probably the most fruitful example to quantify the potential of the SiC-fibre reinforced glass– ceramic composites in terms of durability at high temper￾ature in air. The mechanical properties and corresponding microstructural changes prove that the fibre coatings inhibit interface degradation under most of stress and temperature conditions used. The short and long term properties depends largely on the degree to which the interface microstructure is controlled by the SiC/BN dual coating. The BN coating acts as the key mechanical fuse function for the desired tough￾ness. The SiC layer provides a barrier of diffusion and reac￾tion at high temperature. Further improvements in the perfor￾mance of the SiC/BN coatings may be also possible. This ap￾proach in which each interfaces have a different function as also shown in other CMCs is off great interest for the design and control of interfaces for high temperature continuous- fibre-reinforced composites [39]. That can explain why some aeronautical motorist companies test some parts in glass– ceramic composites on their engines (for example the Trent 800 from Rolls-Royce, with SiC fibre-BMAS petals [2]). Some other applications are considered for parts working in the field 873–1073 K. Acknowledgements Part of our experimental work has been performed in the frame of the Groupement Scientifique GS 4C “Com￾portements thermomécaniques des composites céramique￾céramique à fibres” supported by CNES, CNRS, DRET, MRE, Aérospatiale, SEP and SNECMA companies, and un￾der DRET contrat n◦92/1221. The authors want to warmly thank their colleagues Dr. T. Chartier and Prof. C. Gault (ENSCI, Limoges, France) for fruitful discussions and col￾laborations concerning the SiC Nicalon/MLAS composites fabricated by tape-casting, and Dr. F. Doreau for his results on SiCf/YMAS. References [1] N.P. Bansal, J.I. Eldridge, Effects of interface modification on mechan￾ical behavior of Hi-Nicalon fiber-reinforced Celsian matrix compos￾ites, Ceram. Eng. Sci. Proc. 18 (3) (1997) 379–389. [2] C.P. Beesley, Applications of CMCs in high integrity gas turbine engine, Key Eng. Mat. 127–131 (1997) 165–174. [3] P.M. Benson, K.E. Spear, C.G. Pantano, Interfacial characterization of glass/Nicalon fiber composites: A thermodynamic approach, Ceram. Eng. Sci. Proc. 9 (1988) 663–670. [4] S.M. Bleay, V.D. Scott, B. Harris, R.G. Cooke, F.A. Habib, Interface characterization and fracture of calcium aluminosilicate glass–ceramic reinforced with Nicalon fibres, J. Mater. Sci. 27 (1992) 2811–2822. [5] L.A. Bonney, R.F. Cooper, Reaction-layer interfaces in SiC-fiber￾reinforced glass–ceramics: a high resolution scanning transmission electron microscopy study, J. Am. Ceram. Soc. 73 (10) (1990) 2916– 2921. [6] J.J. Brennan, Interfacial characterization of glass and glass–ceramic matrix/Nicalon SiC fiber composites, Mater. Sci. Res. 20 (1986) 549– 560. [7] J.J. Brennan, Interface characteristics of glass–ceramic matrix/SiC fiber composites, J. Phys. (Suppl.) 49-C5 (1988) 791–809. [8] J.J. Brennan, Interfacial studies of fiber-reinforced glass–ceramic matrix composites, in: R. Naslain, J. Lamon, D. Doumeingts (Eds.), High Temperature Ceramic Matrix Composites, Woodhead Publishing Limited, Abington/Cambridge, 1993, pp. 269–283. [9] J.J. Brennan, S.R. Nutt, E.Y. Sun, Interfacial microstructure and stability of BN-coated Nicalon fiber/glass–ceramic matrix composites, Ceram. Trans. 58 (1995) 53–64. [10] B. Broquère, P. Spriet, M. Lacoste, J.C. Cavalier, Current and future applications of thermostructural composites in aerospace propulsion, 18th European Conf. on Materials for Aerospace Applications, Paris￾Le Bourget, June 16–17, 1999. [11] F. Christin, in: W. Krenkel, R. Naslain, H. Schneider (Eds.), High Temperature Ceramic Matrix Composites, HT-CMC4, Wiley-VCH, Weinheim, Germany, 2001, pp. 731–743. [12] R.F. Cooper, K. Chyung, Structure and chemistry of the fibre￾matrix interfaces in silicon carbide fibre-reinforced glass–ceramic composites: an electron microscopy study, J. Mater. Sci. 22 (1987) 3148–3160. [13] A.M. Daniel, M.H. Lewis, Measurement of interfacial micromechan￾ics in the fibre reinforced ceramic composites, Ceram. Eng. Sci. Proc. 14 (1993) 131–138. [14] F. Doreau, H. Maupas, D. Kervadec, P. Ruterana, J. Vicens, J.L. Chermant, The complexity of the matrix microstructure in SiC-fiber￾reinforced glass ceramic composites, J. Eur. Ceram. Soc. 15 (1995) 1235–1247. [15] F. Doreau, Microstructure, morphologie et comportement en fluage de composites SiC-YMAS unidirectionnels, Thèse de Doctorat, Univer￾sity of Caen, France, 1995. [16] C. Droillard, Elaboration et caractérisation de composites à interphases séquencées PyC/SiC, Thèse de Doctorat, University of Bordeaux, France, 1993. [17] A. Hähnel, E. Pippel, J. Woltersdorf, Nanostructure of interlayers in different Nicalon fibre/glass matrix composites and their effect on mechanical properties, J. Microsc. 177 (1995) 264–271. [18] A. Hähnel, E. Pippel, R. Schneider, J. Woltersdorf, D. Suttor, Forma￾tion and structure of reaction layers in SiC/glass and SiC/SiC compos￾ites, Composites Part A 27A (1996) 685–690. [19] M. Imuta, J. Gotoh, Development of high temperature materials in￾cluding CMCs for space application, Key Engineering Materials 164– 165 (1999) 439–444. Trans. Tech. Publications, Switzerland CSJ Series-Publications of the Ceramic Society of Japan, Vol. 3. [20] S. Jacques, A. Guette, F. Langlais, R. Naslain, S. Goujard, Preparation and characterization of 2D-SiC/SiC composites with composition graded C(B) interphase, J. Eur. Ceram. Soc. 17 (1997) 1083–1092. [21] C. Laffon, A.M. Flank, P. Lagarde, M. Laridjani, R. Hagège, P. Olry, J. Cotteret, J. Dixmier, J.L. Miquel, H. Hommel, A.P. Legrand, Study of Nicalon-based ceramic fibres and powders by EXAFS spectrometry, X-ray diffractometry and some additional methods, J. Mat. Sci. 24 (1989) 1503–1512. [22] M. Lancin, C. Ponthieu, C. Marhic, M. Miloche, SIMS, EDX, EELS, AES, XPS study of interphases in Nicalon fibre-LAS glass matrix composites. Part I. Composition of the interphases, J. Mat. Sci. 29 (1994) 3759–3766. [23] B.L. Laube, J.J. Brennan, Scanning Auger electron spectrocopy of the fibre/matrix interface of SiC fiber/silicate glass matrix composites, J. Vac. Sci. Technol. A 81 (1990) 2096–2100. [24] P. Le Coustumer, M. Monthioux, A. Oberlin, Understanding Nicalon fiber, J. Eur. Ceram. Soc. 11 (1993) 95–103. [25] E. Le Strat, Interfaces de composites fibres SiC Nicalon 202/Matrice Pyrex: Corrélations entre propriétés macroscopiques-mécaniques et électromagnétiques et microscopiques, Thèse de Doctorat, University of Paris VI, France, 1997
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有