正在加载图片...
Thus we have to be careful to identify the appropriate conserved species for the system we are analyzing. If no chemical reactions are involved, then each of the molecular species is conserved. If chemical reactions are involved, then only atomic species are conserved. There will be a mass balance for each of the conserved species. In the example above it does not make much difference since there are four conserved atomic species and four molecular species. But, if dditional reactions take place involving, say, Na2S and NaHSO4, then the number of molecular species exceeds the number of conserved atomic species. This will generally be the case A. Control volumes We apply the principle of the conservation of mass to systems to determine changes in the state of the system that result from adding or removing mass from the system or from chemical reactions taking place within the system. The system will generally be the volume contained within a precisely defined section of a piece of equipment. We refer to this precisely defined volume as a control volume may be the entire volume of the equipment. This would be the case if the system is a cylinder containing a gas or gas mixture. Or it may be the volume associated with a particular phase of the material held within the system. For instance, a flash drum is used to allow a mixture of vapor and liquid to separate into separate vapor and liquid phases. The liquid phase will occupy part of the total volume of the drum; the vapor, the remainder of the volume. If we are interested only in what happens to the liquid phase, then we would specify the volume occupied by the liquid as our control volume Note that the control volume can change over the course of an operation. Suppose we are dding liquid to a tank that contains 100 Kg of water to start with and that we add another 50 K The tank would originally contain 100 liters of water but would contain 150 liters after the addition. On the other hand, if our interest is in the entire contents of the tank- both the liquid and the vapor in the space above it-then we would take the volume of the tank itself as our control volume. This volume. of course. will not change B. Holdup or inventory Another concept that we will need to make precise is that of holdup, also known as inventory or accumulation. Holdup refers to the amount of a conserved species contained within a control volume. We can refer to the total holdup as simply the total mass of material contained within the control volume. Or we can refer to the holdup of a particular component, sodium chloride say, which is contained within the control volume. Needless to say, the sum of the holdups of all of the individual components within the control volume must equal the total hold--6- Thus we have to be careful to identify the appropriate conserved species for the system we are analyzing. If no chemical reactions are involved, then each of the molecular species is conserved. If chemical reactions are involved, then only atomic species are conserved. There will be a mass balance for each of the conserved species. In the example above it does not make much difference since there are four conserved atomic species and four molecular species. But, if additional reactions take place involving, say, Na2S and NaHSO4, then the number of molecular species exceeds the number of conserved atomic species. This will generally be the case. A. Control Volumes We apply the principle of the conservation of mass to systems to determine changes in the state of the system that result from adding or removing mass from the system or from chemical reactions taking place within the system. The system will generally be the volume contained within a precisely defined section of a piece of equipment. We refer to this precisely defined volume as a control volume. It may be the entire volume of the equipment. This would be the case if the system is a cylinder containing a gas or gas mixture. Or it may be the volume associated with a particular phase of the material held within the system. For instance, a flash drum is used to allow a mixture of vapor and liquid to separate into separate vapor and liquid phases. The liquid phase will occupy part of the total volume of the drum; the vapor, the remainder of the volume. If we are interested only in what happens to the liquid phase, then we would specify the volume occupied by the liquid as our control volume. Note that the control volume can change over the course of an operation. Suppose we are adding liquid to a tank that contains 100 Kg of water to start with and that we add another 50 Kg. The tank would originally contain 100 liters of water but would contain 150 liters after the addition. On the other hand, if our interest is in the entire contents of the tank - both the liquid and the vapor in the space above it - then we would take the volume of the tank itself as our control volume. This volume, of course, will not change. B. Holdup or inventory Another concept that we will need to make precise is that of holdup, also known as inventory or accumulation. Holdup refers to the amount of a conserved species contained within a control volume. We can refer to the total holdup as simply the total mass of material contained within the control volume. Or we can refer to the holdup of a particular component, sodium chloride say, which is contained within the control volume. Needless to say, the sum of the holdups of all of the individual components within the control volume must equal the total hold￾up
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有