Vol.29 Suppl.1 韦士来等:津西H型钢冶炼过程中夹杂物行为 31 显微夹杂总体积率为0.15%(由内弧至外弧平 9.4×10-5,铸坯内T[0]为5.0-6.0×10-5.钢水一次脱 均计算值),各类夹杂占显微夹杂总量的比例为:A 氧不彻底,钢中T[O]高,造成夹杂物多,夹杂含量 类夹杂55.4%,B类夹杂34.4%,C类夹杂10.2%.显 波动为裂纹的形成埋下隐患,建议控制中间包内 微夹杂从量上说主要为A、B、C三类,多为脱氧 T[O<7.0x10-5,铸坯内T[O<5.0×10-5. 产物1.其中A、B类占89.8%,其化学成分上比较 (2)正常浇注条件下,中间包内10kg钢中夹杂 接近,为多元素硅的复合氧化物,两者区别主要在 物含量约为102mg,铸坯内夹杂物含量为75~85 于Al、Ca含量的差异.C类占10.2%,该类夹杂含 mg.由中间包到铸坯,夹杂物的去除率为约为40% S较高.钢中显微夹杂含Si较多,含Mn较低,这 左右. 也从另一个侧面反应出钢中Mn/Si低.如果配合金 (3)显微夹杂的体积率V,为0.15%,无论正常坯 时,Mn按规格中上限取值,Si按规格中下限取值, 还是连浇坯,在距内弧的1/5~3/5处夹杂物聚集, 使Mn/Si尽量提高,可以更大限度的脱除显微夹杂 出现峰值,铸坯中显微夹杂粒径较小,0~10um的 含量. 夹杂占64%以上,而大于20um的夹杂约占20%. 铸坯中显微夹杂粒径较小,0~10um的夹杂约 参考文献 占60%以上,10-20μm则占约15%,而大于20μm 的夹杂约占20%.不论非稳态还是稳态显微夹杂在 [1】陈家祥.钢铁治金学(炼钢部分).北京:治金工业出版社,1990 铸坯内弧至外弧上的分布趋势基本是一致的,铸坯 2】张军,陈高兴,刘建华等.连铸异型坯清洁度研究.治金研究, 2005:262 内弧夹杂物含量较高,且在距内弧的1/5~35处出 3]陈伟庆.治金工程实验技术.北京:冶金工业出版社,2004 现夹杂物聚集区,形成这种分布主要是0~10μm夹 [4]张文邯钢低碳铝镇静钢中夹杂物行为的物理化学基础研究[硕 杂的分布所致. 士论文].北京:北京科技大学,2006 [⑤]尚德礼,黄浪,王习东,钢中夹杂物颗粒方法研究治金研究。 3结论 2005:285 (1)正常浇注条件下,中间包内T[O]约为 Inclusion behavior in the manufacturing of H type steel in Jinxi steel WEI Shilai,YANG Jingjun?) 1)Hebei Jinxi Iron and Steel Co.Ltd.Tangshan 063006,China 2)Metallurgical and Ecological Engineering School,University and Science Technology Beijing,Beijing 100083,China ABSTRACT The effect of total oxygen content and nitrogen content on the quality of H type steel and the type and morphology of macroinclusions and microinclusions in steel were analyzed concerning the change of total oxygen content and nitrogen content during H type steel manufacturing in Jinxi Steel.Volume rate method was applied to calculate the distribution of various inclusions in steel.Inadequate primary deoxidization in liquid steel and high total oxygen in steel account for excessive inclusions.The undulation of inclusion quantity ac- counts for the formation of cracks.From tundish to billet,the elimination rate of inclusions is about 40%.The origin of most inclusions is not unitary.The granule diameter of micro inclusions in billet is small.Inclusions of 0~10 um account for over 64%,while inclusions of over 20 um do about 20%. KEY WORDS steelmaking;total oxygen;inclusions;deoxidizationVol.29 Suppl.1 韦士来等:津西 H 型钢冶炼过程中夹杂物行为 • 31 • 显微夹杂总体积率为 0.15%(由内弧至外弧平 均计算值),各类夹杂占显微夹杂总量的比例为:A 类夹杂 55.4%,B 类夹杂 34.4%,C 类夹杂 10.2%.显 微夹杂从量上说主要为 A、B、C 三类,多为脱氧 产物[5].其中 A、B 类占 89.8%,其化学成分上比较 接近,为多元素硅的复合氧化物,两者区别主要在 于 Al、Ca 含量的差异.C 类占 10.2%,该类夹杂含 S 较高.钢中显微夹杂含 Si 较多,含 Mn 较低,这 也从另一个侧面反应出钢中 Mn/Si 低.如果配合金 时,Mn 按规格中上限取值,Si 按规格中下限取值, 使 Mn/Si 尽量提高,可以更大限度的脱除显微夹杂 含量. 铸坯中显微夹杂粒径较小,0~10 µm 的夹杂约 占 60%以上,10~20 µm 则占约 15%,而大于 20 µm 的夹杂约占 20%.不论非稳态还是稳态显微夹杂在 铸坯内弧至外弧上的分布趋势基本是一致的,铸坯 内弧夹杂物含量较高,且在距内弧的 1/5~3/5 处出 现夹杂物聚集区,形成这种分布主要是 0~10µm 夹 杂的分布所致. 3 结论 (1) 正常浇注条件下,中间包内 T[O] 约 为 9.4×10−5 ,铸坯内 T[O]为 5.0~6.0×10−5 .钢水一次脱 氧不彻底,钢中 T[O]高,造成夹杂物多,夹杂含量 波动为裂纹的形成埋下隐患,建议控制中间包内 T[O]<7.0×10−5 ,铸坯内 T[O]<5.0×10−5 . (2)正常浇注条件下,中间包内 10 kg 钢中夹杂 物含量约为 102 mg,铸坯内夹杂物含量为 75~85 mg.由中间包到铸坯,夹杂物的去除率为约为 40% 左右. (3)显微夹杂的体积率 Vv 为 0.15%,无论正常坯 还是连浇坯,在距内弧的 1/5~3/5 处夹杂物聚集, 出现峰值,铸坯中显微夹杂粒径较小,0~10 µm 的 夹杂占 64%以上,而大于 20 µm 的夹杂约占 20%. 参 考 文 献 [1] 陈家祥. 钢铁冶金学(炼钢部分).北京:冶金工业出版社,1990 [2] 张军,陈高兴,刘建华等. 连铸异型坯清洁度研究. 冶金研究, 2005:262 [3] 陈伟庆. 冶金工程实验技术.北京:冶金工业出版社, 2004 [4] 张文.邯钢低碳铝镇静钢中夹杂物行为的物理化学基础研究[硕 士论文]. 北京:北京科技大学, 2006 [5] 尚德礼,黄浪,王习东. 钢中夹杂物颗粒方法研究.冶金研究。 2005:285 Inclusion behavior in the manufacturing of H type steel in Jinxi steel WEI Shilai1), YANG Jingjun2) 1) Hebei Jinxi Iron and Steel Co.Ltd. Tangshan 063006, China 2) Metallurgical and Ecological Engineering School, University and Science Technology Beijing, Beijing 100083, China ABSTRACT The effect of total oxygen content and nitrogen content on the quality of H type steel and the type and morphology of macroinclusions and microinclusions in steel were analyzed concerning the change of total oxygen content and nitrogen content during H type steel manufacturing in Jinxi Steel. Volume rate method was applied to calculate the distribution of various inclusions in steel. Inadequate primary deoxidization in liquid steel and high total oxygen in steel account for excessive inclusions. The undulation of inclusion quantity accounts for the formation of cracks. From tundish to billet, the elimination rate of inclusions is about 40%. The origin of most inclusions is not unitary. The granule diameter of micro inclusions in billet is small. Inclusions of 0~10 µm account for over 64%, while inclusions of over 20 µm do about 20%. KEY WORDS steelmaking; total oxygen; inclusions; deoxidization