82 6 Elastic Constants Based on Global Coordinate System function y =NUxy(E1,E2,NU12,G12,theta) %NUxy This function returns Poisson's ratio % NUxy in the global % coordinate system.It has five arguments: % E1-longitudinal elastic modulus % E2-transverse elastic modulus % NU12 -Poisson's ratio % G12-shear modulus % theta-fiber orientation angle The angle "theta"must be given in degrees. 名 NUxy is returned as a scalar m cos(theta*pi/180); n sin(theta*pi/180); denom=m^4+(E1/G12-2*NU12)*n*n*m*m+(E1/E2)*n*n; numer=N012*(n4+m~4)-(1+E1/E2-E1/G12)*n*n*m*m; y =numer/denom; function y Ey(E1,E2,NU21,G12,theta) %Ey This function returns the elastic modulus % along the y-direction in the global % coordinate system.It has five arguments: % E1 -longitudinal elastic modulus % E2 transverse elastic modulus % NU21 -Poisson's ratio G12 shear modulus 名 theta fiber orientation angle The angle "theta"must be given in degrees 名 Ey is returned as a scalar m cos(theta*pi/180); n =sin(theta*pi/180); denom=m^4+(E2/G12-2*NU21)*n*n*m*m+(E2/E1)*n4; y=E2/denom; function y NUyx(E1,E2,NU21,G12,theta) %NUyx This function returns Poisson's ratio % NUyx in the global % coordinate system.It has five arguments: E1 -longitudinal elastic modulus E2 -transverse elastic modulus % NU21 -Poisson's ratio G12-shear modulus 名 theta-fiber orientation angle % The angle "theta"must be given in degrees. % NUyx is returned as a scalar m cos(theta*pi/180); n=sin(theta*pi/180); denom=m4+(E2/G12-2*NU21)*n*n*m*m+(E2/E1)*n*n; numer=NU21*(n4+m4)-(1+E2/E1-E2/G12)*n*n*m*m; y =numer/denom;82 6 Elastic Constants Based on Global Coordinate System function y = NUxy(E1,E2,NU12,G12,theta) %NUxy This function returns Poisson’s ratio % NUxy in the global % coordinate system. It has five arguments: % E1 - longitudinal elastic modulus % E2 - transverse elastic modulus % NU12 - Poisson’s ratio % G12 - shear modulus % theta - fiber orientation angle % The angle "theta" must be given in degrees. % NUxy is returned as a scalar m = cos(theta*pi/180); n = sin(theta*pi/180); denom = m^4 + (E1/G12 - 2*NU12)*n*n*m*m + (E1/E2)*n*n; numer = NU12*(n^4 + m^4) - (1 + E1/E2 - E1/G12)*n*n*m*m; y = numer/denom; function y = Ey(E1,E2,NU21,G12,theta) %Ey This function returns the elastic modulus % along the y-direction in the global % coordinate system. It has five arguments: % E1 - longitudinal elastic modulus % E2 - transverse elastic modulus % NU21 - Poisson’s ratio % G12 - shear modulus % theta - fiber orientation angle % The angle "theta" must be given in degrees. % Ey is returned as a scalar m = cos(theta*pi/180); n = sin(theta*pi/180); denom = m^4 + (E2/G12 - 2*NU21)*n*n*m*m + (E2/E1)*n^4; y = E2/denom; function y = NUyx(E1,E2,NU21,G12,theta) %NUyx This function returns Poisson’s ratio % NUyx in the global % coordinate system. It has five arguments: % E1 - longitudinal elastic modulus % E2 - transverse elastic modulus % NU21 - Poisson’s ratio % G12 - shear modulus % theta - fiber orientation angle % The angle "theta" must be given in degrees. % NUyx is returned as a scalar m = cos(theta*pi/180); n = sin(theta*pi/180); denom = m^4 + (E2/G12 - 2*NU21)*n*n*m*m + (E2/E1)*n*n; numer = NU21*(n^4 + m^4) - (1 + E2/E1 - E2/G12)*n*n*m*m; y = numer/denom;