正在加载图片...
第10期 黄伟等:热镀锌工艺对无Si含P的TRP钢力学性能影响 ·1225· Mahieu J.Contribution to the Physical Metallurgy of Crash-resist- 900L ant Galvanized TRIP-ussisted Steel for Automotive Structures [Dis- 800F sertation].Belgium:Ghent University,2004 700 B]Maki J,Mahieu J,De Cooman B C,et al.Galvanisability of sili- con free CMnAl TRIP steels.Mater Sci Technol,2003,19 (1) 500 125 400 ···60 —30 [4]Zhang Q F.Liu B J,Huang JZ.Modern Continuous Hot Dip Gal- 300 ---20. vanizing of Steel Sheets.Beijing:Metallurgical Industry Press, 200 2007 100 (张启富,刘邦津,黄建中.现代带钢连续热镀锌.北京:冶金 10 15 工业出版社,2007) 应变% [5]Bellhousea E M,MeDermid J R.Analysis of the Fe-Zn interface of galvanized high Al-ow Si TRIP steels.Mater Sci Eng A,2008, 图9试样拉伸应力一应变曲线 491(1/2):39 Fig.9 Tensile stress-strain curves of samples [6]Li L.De Cooman B.Liu R D,et al.Design of TRIP Steel with 伸率优于同等强度的双相钢. high welding and galvanizing performance in light of thermodynam- ics and kinetics.J lron Steel Res Int,2007,14(6):37 3结论 ]Barbe L.Physical Metallurgy of P Alloyed TRIP Steels [Disserta- (I)本文所设计的无Si含P的TRP钢在热镀 tion].Ghent:Ghent University,2006 [8]Jing C N,Liu Z X,Wang Z C,et al.Effects of intercritical an- 锌工艺下能得到令人满意的力学性能,其抗拉强度 nealing treatment on the phase transformation and mechanical prop- 主要集中在780~840MPa,延伸率主要集中在 erties of 0.15C-.5Mn-.5Al TRIP-aided cold-rolled steel sheets. 23%~26%. J Uni Sci Technol Beijing,2008,30(6):610 (2)在热镀锌工艺中,贝氏体相变时间对无S (景财年,刘在学,王作成,等.临界区退火处理对0.15C一 含P的TRP钢力学性能的影响最大,随着等温时 1.5Mn-1.5A1冷轧TRP钢相变和力学性能的影响.北京科技 间在20~60s内逐渐增加,屈服强度显著增加,抗拉 大学学报,2008,30(6):610) ] De A K,Speer J G,Matlock D K.Color tint-etching for multi- 强度逐渐下降,而延伸率大幅上升,当贝氏体等温时 phase steels.Adr Mater Processes,2003,161(2):27 间为60s时,实验钢种出现最佳的综合力学性能. [10]Zhou Y.Material Analysis.Beijing:Mechanical Industry Press, (3)无Si含P热镀锌TRIP钢的组织是由铁素 2006 体、贝氏体、残余奥氏体和马氏体所组成.随着贝氏 (周玉.材料分析方法.北京:机械工业出版社,2006) 体等温时间从20s增加到60s,组织中马氏体呈现 [11]Jiang H T,Wu H B,Tang D,et al.Influence of isothermal bai- nitic processing on the mechanical properties and microstructure 显著的下降趋势,而残余奥氏体量逐渐增加,体积分 characterization of TRIP steel.Univ Sci Technol Beijing,2008, 数从7.09%增加到11.37%,残余奥氏体中碳的质 15(5):574 量分数也从1.032%上升到1.248%. 2] Ding W,Tang D,Jiang HT,et al.Annealing processing param- (4)无Si含P的热镀锌TRP钢的强塑性机理 eters and microstructure evolution of 780 MPa hot dip galvanizing 是TRP效应和马氏体强化的复合体现,组织中残 TRIP steel.J Univ Sci Technol Beijing,2010,32(6)753 (定巍,唐获,江海涛,等.780MPa级热镀锌用TRP钢退火 余奥氏体和马氏体的相对含量决定着这两种强化机 工艺及组织演变.北京科技大学学报,2010,32(6):753) 制的主导地位 D3] Xiong Z L,Jiang H T,Cai Q W,et al.Tension test and micro- structural mechanism for eliminating the yield platform of TRIP 参考文献 steel.J Unir Sci Technol Beijing,2008,30(4):379 [Jacques P J,Girault E,Harlet P,et al.The developments of (熊自柳,江海涛,蔡庆伍,等.消除TRP钢屈服平台的预 cold-rolled TRIP-assisted multiphase steels:low silicon TRIP-as- 拉伸实验及微观机理.北京科技大学学报,2008,30(4): sisted multiphase steels./S//Int,2001,41(9):1061 379)第 10 期 黄 伟等: 热镀锌工艺对无 Si 含 P 的 TRIP 钢力学性能影响 图 9 试样拉伸应力--应变曲线 Fig. 9 Tensile stress-strain curves of samples 伸率优于同等强度的双相钢. 3 结论 ( 1) 本文所设计的无 Si 含 P 的 TRIP 钢在热镀 锌工艺下能得到令人满意的力学性能,其抗拉强度 主要 集 中 在 780 ~ 840 MPa,延伸率主要集中在 23% ~ 26% . ( 2) 在热镀锌工艺中,贝氏体相变时间对无 Si 含 P 的 TRIP 钢力学性能的影响最大,随着等温时 间在 20 ~ 60 s 内逐渐增加,屈服强度显著增加,抗拉 强度逐渐下降,而延伸率大幅上升,当贝氏体等温时 间为 60 s 时,实验钢种出现最佳的综合力学性能. ( 3) 无 Si 含 P 热镀锌 TRIP 钢的组织是由铁素 体、贝氏体、残余奥氏体和马氏体所组成. 随着贝氏 体等温时间从 20 s 增加到 60 s,组织中马氏体呈现 显著的下降趋势,而残余奥氏体量逐渐增加,体积分 数从 7. 09% 增加到 11. 37% ,残余奥氏体中碳的质 量分数也从 1. 032% 上升到 1. 248% . ( 4) 无 Si 含 P 的热镀锌 TRIP 钢的强塑性机理 是 TRIP 效应和马氏体强化的复合体现,组织中残 余奥氏体和马氏体的相对含量决定着这两种强化机 制的主导地位. 参 考 文 献 [1] Jacques P J,Girault E,Harlet P,et al. The developments of cold-rolled TRIP-assisted multiphase steels: low silicon TRIP-as￾sisted multiphase steels. ISIJ Int,2001,41( 9) : 1061 [2] Mahieu J. Contribution to the Physical Metallurgy of Crash-resist￾ant Galvanized TRIP-assisted Steel for Automotive Structures[Dis￾sertation]. Belgium: Ghent University,2004 [3] Maki J,Mahieu J,De Cooman B C,et al. Galvanisability of sili￾con free CMnAl TRIP steels. Mater Sci Technol,2003,19 ( 1) : 125 [4] Zhang Q F,Liu B J,Huang J Z. Modern Continuous Hot Dip Gal￾vanizing of Steel Sheets. Beijing: Metallurgical Industry Press, 2007 ( 张启富,刘邦津,黄建中. 现代带钢连续热镀锌. 北京: 冶金 工业出版社,2007) [5] Bellhousea E M,McDermid J R. Analysis of the Fe-Zn interface of galvanized high Al-low Si TRIP steels. Mater Sci Eng A,2008, 491( 1 /2) : 39 [6] Li L,De Cooman B,Liu R D,et al. Design of TRIP Steel with high welding and galvanizing performance in light of thermodynam￾ics and kinetics. J Iron Steel Res Int,2007,14( 6) : 37 [7] Barbé L. Physical Metallurgy of P Alloyed TRIP Steels[Disserta￾tion]. Ghent: Ghent University,2006 [8] Jing C N,Liu Z X,Wang Z C,et al. Effects of intercritical an￾nealing treatment on the phase transformation and mechanical prop￾erties of 0. 15C-1. 5Mn-1. 5Al TRIP-aided cold-rolled steel sheets. J Univ Sci Technol Beijing,2008,30( 6) : 610 ( 景财年,刘在学,王作成,等. 临界区退火处理对 0. 15C-- 1. 5Mn--1. 5Al 冷轧 TRIP 钢相变和力学性能的影响. 北京科技 大学学报,2008,30( 6) : 610) [9] De A K,Speer J G,Matlock D K. Color tint-etching for multi￾phase steels. Adv Mater Processes,2003,161( 2) : 27 [10] Zhou Y. Material Analysis. Beijing: Mechanical Industry Press, 2006 ( 周玉. 材料分析方法. 北京: 机械工业出版社,2006) [11] Jiang H T,Wu H B,Tang D,et al. Influence of isothermal bai￾nitic processing on the mechanical properties and microstructure characterization of TRIP steel. J Univ Sci Technol Beijing,2008, 15( 5) : 574 [12] Ding W,Tang D,Jiang H T,et al. Annealing processing param￾eters and microstructure evolution of 780 MPa hot dip galvanizing TRIP steel. J Univ Sci Technol Beijing,2010,32( 6) : 753 ( 定巍,唐荻,江海涛,等. 780 MPa 级热镀锌用 TRIP 钢退火 工艺及组织演变. 北京科技大学学报,2010,32( 6) : 753) [13] Xiong Z L,Jiang H T,Cai Q W,et al. Tension test and micro￾structural mechanism for eliminating the yield platform of TRIP steel. J Univ Sci Technol Beijing,2008,30( 4) : 379 ( 熊自柳,江海涛,蔡庆伍,等. 消除 TRIP 钢屈服平台的预 拉伸实验及微观机理. 北京科技大学学报,2008,30 ( 4) : 379) ·1225·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有