正在加载图片...
REVIEW ARTICLES IINSIGHT NATURE MATERIALS DOL:10.1038/NMAT2400 12.Varela,M.et al.Materials characterization in the aberration corrected scanning 38.Sutton,M.et al.Observation of speckle by diffraction with coherent X-rays. transmission electron microscope.Annu.Rev.Mater.Res.35,539-569(2005). Nature352,608-610(1991). 13.Hytch,M.,Houdellier,F,Hue,F&Snoeck,E.Nanoscale holographic 39.Miao,J.Sayre,D.On possible extensions of X-ray crystallography through interferometry for strain measurements in electronic devices.Nature diffraction-pattern oversampling.Acta Crystallogr.A 56,596-605(2000). 453,1086-1089(2008). 40.Pfeifer,M.A.Williams,G.,Vartanyants,I.A..Harder,R.&Robinson,I.K. 14.Ade,H.Stoll,H.Near-edge X-ray absorption fine-structure microscopy of Three-dimensional mapping of a deformation field inside a nanocrystal.Nature organic and magnetic materials.Nature Mater.8,281-290(2009). 442,63-66(2006). 15.Thibault,P.et al.High-resolution scanning X-ray diffraction microscopy. 41.Landau,L.Lifshitz,E.Theory of Elasticity (Pergamon,1986). Science321,379-382(2008). 42.Harder,R.,Pfeifer,M.A.,Williams,G.J.,Vartaniants,I.A.Robinson,I.K. 16.Rodenburg.I.M.et al.Hard-X-ray lensless imaging of extended objects. Orientation variation of surface strain.Phys.Rev.B 76,115425(2007). Ph5.Rev.Lett.98,034801(2007). 43.Marks,L.D.Experimental studies of small particle structures.Rep.Prog.Phys. 17.Larson,B.C.,Yang,W.,Ice,G.E.,Budai,J.D.&Tischler,J.Z.Three- 57,603-649(1994). dimensional X-ray structural microscopy with submicrometre resolution. 44.Kirkpatrick,P.Baez,A.V.Formation of optical images by X-rays. Nature415,887-890(2002) L0pL.Soc.Am.38,766-774(1948) 18.Schmidt,S.etal Watching the growth of bulk grains during recrystallization of 45.Jefimovs,K.et al.Fabrication of Fresnel zone plates for hard X-rays deformed metals.Science 305,229-232 (2004). Microelectr.Engineer.84,1467-1470(2007). 19.Ice,G.E.&Larson,B.C.Three-dimensional X-ray structural microscopy using 46.Snigirev,A.,Kohn,V.,Snigireva,I.Lengeler,B.A compound refractive lens polychromatic microbeams.Mater.Res.Soc.Bull.29,170-176(2004). for focusing high-energy X-rays.Nature 384,49-51(1996). 20.Miao,I.W.,Charalambous,P.,Kirz,J.Sayre,D.Extending the methodology 47.Born,M.Wolf,E.Principles of Optics 7th edn (Cambridge Univ.Press,1999). of X-ray crystallography to allow imaging of micrometre-sized non-crystalline 48.Schroer,C.G.et al.Coherent X-ray diffraction imaging with nanofocused specimens.Nature 400,342-344 (1999) illumination.Phys.Rev.Lett.101,090801 (2008). 21.Metzger,T.H.,Schulli,T.U.Schmidbauer,M.X-ray methods for strain 49.Abbey,B.et al.Keyhole coherent diffractive imaging.Nature Phys and composition analysis in self-organized semiconductor nanostructures. 4,394-398(2008) C.R.Phs.6,47-59(2005). 50.Williams,G.J.et al.Fresnel coherent diffractive imaging.Phys.Rev.Lett. 22.Krause,B.et al.Shape,strain,and ordering oflateral InAs quantum dot 97,025506(2006). molecules.Phys.Rev.B72,085339 (2005). 51.Quiney,H.M.,Peele,A.G.,Cai,Z.,Paterson,D.Nugent,K.A.Diffractive 23.Plantevin,O.,Gago,R Vazquez,L.Biermanns,A.&Metzger,T.H.In imaging of highly focused X-ray fields.Nature Phys.2,101-104(2006) situ X-ray scattering study of self-organized nanodot pattern formation on 52.Huang,W.J.et al.Coordination-dependent surface atomic contraction in GaSb(001)by ion beam sputtering.Appl.Phrys.Lett 91,113105 (2007). nanocrystals revealed by coherent diffraction.Nature Mater.7,308-313(2008) 24.Malachias,A.et al.X-ray study of atomic ordering in self-assembled Ge islands 53.Zuo,J.M.,Vartanyants,L,Gao,M.,Zhang,R.Nagahara,L.A.Atomic grown on Si(001).Phys.Rev.B 72,165315(2005). resolution imaging of a single double-wall carbon nanotube from diffraction 25.Richard,M.I.Metzger,T.H.Defect cores investigated by X-ray scattering intensities.Science 300,1419-1421 (2003) close to forbidden reflections in silicon.Phys.Rev.Lett.99,225504(2007). 54.Murray,C.B.Colloidal synthesis of nanocrystals and nanocrystal superlattices 26.Malachias,A.,Metzger,T.H.,Stoffel,M.,Schmidt,O.G.Holy,V. IBMI.Res.De.45,47-56(2001). Composition and atomic ordering of Ge/Si(001)wetting layers.Thin Solid Films 55.Marchesini,S.et al.X-ray image reconstruction from a diffraction pattern 5155587-5592(2007). alone.Phys.ReB68,140101(2003). 27.Brehm,M.et al.Quantitative determination of Ge profiles across SiGe wetting 56.Sayre,D.Some implications of a theorem due to Shannon.Acta Crystallogr layers on Si (001).Appl.Phys.Lett.93,121901 (2008). 5,843-843(1952). 28.Matthews,I.W.&Biakeslee,A.E J.Cryst.Growth 32,265-273(1976). 57.Shannon,C.Communication in the presence of noise 29.Fiory,A.T.,Bean,J.C.,Feldman,L.C.Robinson,I.K.Commensurate and Proc.Inst.Radio Engineers 37,10-21 (1949). incommensurate structures in molecular beam epitaxially grown Ge Si.films 58.Bates,R.H.T.Fourier phase problems are uniquely solvable in more than one onSi(100).L.Appl Phys.56,1227-1229(1984). dimension.1.Underlying theory.Optik 61,247-262(1982). 30.Kegel,I.et al.Determination of strain fields and composition of 59.Fienup,I.R.Phase retrieval algorithms:a comparison.Appl.Opt. self-organized quantum dots using X-ray diffraction.Plrys.Rev.B 21,2758-2769(1982). 63,035318(2001) 60.Williams,G.J,Pfeifer,M.A.,Vartanyants,I.A.Robinson,I.K.Effectiveness 31.Malachias,A.et al.3D composition of epitaxial nanocrystals by anomalous of iterative algorithms in recovering phase in the presence of noise. x-ray diffraction:Observation of a Si-rich core in Ge domes on Si(100). Acta Crystallogr.A 63,36-42 (2007). Phys.Rev.Lett..91,176101(2003). 61.Vartanyants,I.A.,Pitney,J.A..Libbert,J.L.Robinson,I.K.Reconstruction 32.Zhong.ZChen,P.Jiang.Z.&Bauer,G.Temperature dependence of ordered of surface morphology from coherent X-ray reflectivity.Phrys.Rev.B GeSi island growth on patterned Si(001)substrates.Appl.Phys.Lett. 55,13193-13202(1997). 93,043106(2008). 62.Vartanyants,I.A.Robinson,I.K.Partial coherence effects on the imaging 33.Gailhanou,M.et al.Strain field in silicon on insulator lines using high of small crystals using coherent X-ray diffraction.I Phys.Condens.Matter resolution X-ray diffraction.Appl.Phys.Lett.90,111914 (2007). 13,10593-10611(2001). 34.Lagally,M.G.Rugheimer,P.P.Strain engineering in germanium quantum dot growth on silicon and silicon-on-insulator.Ipn.I.Appl.Phys Acknowledgements 41,4863-4866(2002). We acknowledge the collaboration of M.Watari,M.Newton,S.J.Leake,R.A.McKendry 35.Prevot,G.Croset,B.Elastic relaxations and interactions on metallic vicinal and G.Aeppli in the experimental work presented in Fig.4.That previously unpublished surfaces:Testing the dipole model.Phys.Rev.B 74,235410(2006). research was supported by a Royal Society Wolfson Award,a European Seventh 36.Eberlein,M.et al.Investigation by high resolution X-ray diffraction of Framework Programme Advanced Grant and the Engineering and Physical Sciences the local strains induced in Si by periodic arrays of oxide filled trenches. Research Council grant EP/D052939/1.The CXD instrumentation,based at APS Phs.S1 atus Solidi A204.2542-2547(2007). beamline 34-ID-C,was built with US National Science Foundation grant DMR-9724294 37.Minkevich,A.A.et al.Inversion of the diffraction pattern from an and supported by the Materials Research Laboratory of the University of Illinois under inhomogeneously strained crystal using an iterative algorithm.Phys.Rev.B US Department of Energy(DOE)contract DEFGO2-91ER45439.The APS is operated by 76,104106(2007). the US DOE contract number W31 109 ENG 38. 298 NATURE MATERIALS|VOL 8|APRIL 2009 www.nature.com/naturematerials 2009 Macmillan Publishers Limited.All rights reserved298 nature materials | VOL 8 | APRIL 2009 | www.nature.com/naturematerials review articles | insight NaTure maTerials doi: 10.1038/nmat2400 12. Varela, M. et al. Materials characterization in the aberration corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539–569 (2005). 13. Hytch, M., Houdellier, F., Hue, F. & Snoeck, E. Nanoscale holographic interferometry for strain measurements in electronic devices. Nature 453, 1086–1089 (2008). 14. Ade, H. & Stoll, H. Near-edge X-ray absorption fine-structure microscopy of organic and magnetic materials. Nature Mater. 8, 281–290 (2009). 15. Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008). 16. Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007). 17. Larson, B. C., Yang, W., Ice, G. E., Budai, J. D. & Tischler, J. Z. Three￾dimensional X-ray structural microscopy with submicrometre resolution. Nature 415, 887–890 (2002). 18. Schmidt, S. et al. Watching the growth of bulk grains during recrystallization of deformed metals. Science 305, 229–232 (2004). 19. Ice, G. E. & Larson, B. C. Three-dimensional X-ray structural microscopy using polychromatic microbeams. Mater. Res. Soc. Bull. 29, 170–176 (2004). 20. Miao, J. W., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999). 21. Metzger, T. H., Schulli, T. U. & Schmidbauer, M. X-ray methods for strain and composition analysis in self-organized semiconductor nanostructures. C. R. Phys. 6, 47–59 (2005). 22. Krause, B. et al. Shape, strain, and ordering of lateral InAs quantum dot molecules. Phys. Rev. B 72, 085339 (2005). 23. Plantevin, O., Gago, R., Vazquez, L., Biermanns, A. & Metzger, T. H. In situ X-ray scattering study of self-organized nanodot pattern formation on GaSb(001) by ion beam sputtering. Appl. Phys. Lett. 91, 113105 (2007). 24. Malachias, A. et al. X-ray study of atomic ordering in self-assembled Ge islands grown on Si(001). Phys. Rev. B 72, 165315 (2005). 25. Richard, M. I. & Metzger, T. H. Defect cores investigated by X-ray scattering close to forbidden reflections in silicon. Phys. Rev. Lett. 99, 225504 (2007). 26. Malachias, A., Metzger, T. H., Stoffel, M., Schmidt, O. G. & Holy, V. Composition and atomic ordering of Ge/Si(001) wetting layers. Thin Solid Films 515, 5587–5592 (2007). 27. Brehm, M. et al. Quantitative determination of Ge profiles across SiGe wetting layers on Si (001). Appl. Phys. Lett. 93, 121901 (2008). 28. Matthews, J. W. & Blakeslee, A. E. J. Cryst. Growth 32, 265–273 (1976). 29. Fiory, A. T., Bean, J. C., Feldman, L. C. & Robinson, I. K. Commensurate and incommensurate structures in molecular beam epitaxially grown GexSi1-x films on Si(100). J. Appl. Phys. 56, 1227–1229 (1984). 30. Kegel, I. et al. Determination of strain fields and composition of self-organized quantum dots using X-ray diffraction. Phys. Rev. B 63, 035318 (2001). 31. Malachias, A. et al. 3D composition of epitaxial nanocrystals by anomalous x-ray diffraction: Observation of a Si-rich core in Ge domes on Si(100). Phys. Rev. Lett. 91, 176101 (2003). 32. Zhong, Z., Chen, P., Jiang, Z. & Bauer, G. Temperature dependence of ordered GeSi island growth on patterned Si(001) substrates. Appl. Phys. Lett. 93, 043106 (2008). 33. Gailhanou, M. et al. Strain field in silicon on insulator lines using high resolution X-ray diffraction. Appl. Phys. Lett. 90, 111914 (2007). 34. Lagally, M. G. & Rugheimer, P. P. Strain engineering in germanium quantum dot growth on silicon and silicon-on-insulator. Jpn. J. Appl. Phys. 41, 4863–4866 (2002). 35. Prevot, G. & Croset, B. Elastic relaxations and interactions on metallic vicinal surfaces: Testing the dipole model. Phys. Rev. B 74, 235410 (2006). 36. Eberlein, M. et al. Investigation by high resolution X-ray diffraction of the local strains induced in Si by periodic arrays of oxide filled trenches. Phys. Status Solidi A 204, 2542–2547 (2007). 37. Minkevich, A. A. et al. Inversion of the diffraction pattern from an inhomogeneously strained crystal using an iterative algorithm. Phys. Rev. B 76, 104106 (2007). 38. Sutton, M. et al. Observation of speckle by diffraction with coherent X-rays. Nature 352, 608–610 (1991). 39. Miao, J. & Sayre, D. On possible extensions of X-ray crystallography through diffraction-pattern oversampling. Acta Crystallogr. A 56, 596–605 (2000). 40. Pfeifer, M. A., Williams, G. J., Vartanyants, I. A., Harder, R. & Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006). 41. Landau, L. & Lifshitz, E. Theory of Elasticity (Pergamon, 1986). 42. Harder, R., Pfeifer, M. A., Williams, G. J., Vartaniants, I. A. & Robinson, I. K. Orientation variation of surface strain. Phys. Rev. B 76, 115425 (2007). 43. Marks, L. D. Experimental studies of small particle structures. Rep. Prog. Phys. 57, 603–649 (1994). 44. Kirkpatrick, P. & Baez, A. V. Formation of optical images by X-rays. J. Opt. Soc. Am. 38, 766–774 (1948). 45. Jefimovs, K. et al. Fabrication of Fresnel zone plates for hard X-rays. Microelectr. Engineer. 84, 1467–1470 (2007). 46. Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for focusing high-energy X-rays. Nature 384, 49–51 (1996). 47. Born, M. & Wolf, E. Principles of Optics 7th edn (Cambridge Univ. Press, 1999). 48. Schroer, C. G. et al. Coherent X-ray diffraction imaging with nanofocused illumination. Phys. Rev. Lett. 101, 090801 (2008). 49. Abbey, B. et al. Keyhole coherent diffractive imaging. Nature Phys. 4, 394–398 (2008). 50. Williams, G. J. et al. Fresnel coherent diffractive imaging. Phys. Rev. Lett. 97, 025506 (2006). 51. Quiney, H. M., Peele, A. G., Cai, Z., Paterson, D. & Nugent, K. A. Diffractive imaging of highly focused X-ray fields. Nature Phys. 2, 101–104 (2006). 52. Huang, W. J. et al. Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. Nature Mater. 7, 308–313 (2008). 53. Zuo, J. M., Vartanyants, I., Gao, M., Zhang, R. & Nagahara, L. A. Atomic resolution imaging of a single double-wall carbon nanotube from diffraction intensities. Science 300, 1419–1421 (2003). 54. Murray, C. B. Colloidal synthesis of nanocrystals and nanocrystal superlattices. IBM J. Res. Dev. 45, 47–56 (2001). 55. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101 (2003). 56. Sayre, D. Some implications of a theorem due to Shannon. Acta Crystallogr. 5, 843–843 (1952). 57. Shannon, C. Communication in the presence of noise. Proc. Inst. Radio Engineers 37, 10–21 (1949). 58. Bates, R. H. T. Fourier phase problems are uniquely solvable in more than one dimension. 1. Underlying theory. Optik 61, 247–262 (1982). 59. Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982). 60. Williams, G. J., Pfeifer, M. A., Vartanyants, I. A. & Robinson, I. K. Effectiveness of iterative algorithms in recovering phase in the presence of noise. Acta Crystallogr. A 63, 36–42 (2007). 61. Vartanyants, I. A., Pitney, J. A., Libbert, J. L. & Robinson, I. K. Reconstruction of surface morphology from coherent X-ray reflectivity. Phys. Rev. B 55, 13193–13202 (1997). 62. Vartanyants, I. A. & Robinson, I. K. Partial coherence effects on the imaging of small crystals using coherent X-ray diffraction. J. Phys. Condens. Matter 13, 10593–10611 (2001). acknowledgements We acknowledge the collaboration of M. Watari, M. Newton, S. J. Leake, R. A. McKendry and G. Aeppli in the experimental work presented in Fig. 4. That previously unpublished research was supported by a Royal Society Wolfson Award, a European Seventh Framework Programme Advanced Grant and the Engineering and Physical Sciences Research Council grant EP/D052939/1. The CXD instrumentation, based at APS beamline 34-ID-C, was built with US National Science Foundation grant DMR-9724294 and supported by the Materials Research Laboratory of the University of Illinois under US Department of Energy (DOE) contract DEFG02-91ER45439. The APS is operated by the US DOE contract number W 31 109 ENG 38. nmat_2400_APR09.indd 298 13/3/09 12:04:33 © 2009 Macmillan Publishers Limited. All rights reserved
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有