正在加载图片...
·360· 智能系统学报 第16卷 0.5 Tmall Rey,USA,2018:108-116 0.4 Le Gowalla [4]KOREN Y.Collaborative filtering with temporal dynam- ics[C]//Proceedings of the 15th ACM SIGKDD Interna- 邓0.2 tional Conference on Knowledge Discovery and Data Min- 0.1 ing.Paris,France,2009:447-456. 0 10 20 30 40 50 维度 [5]GARCIN F,DIMITRAKAKIS C,FALTINGS B.Person- alized news recommendation with context trees[C]//Pro- 图7维度参数对模型的影响 ceedings of the 7th ACM Conference on Recommender Fig.7 Impact of dimension parameter Systems.Hong Kong,China,2013:105-112. 4结束语 [6]RENDLE S.FREUDENTHALER C.SCHMIDT-THIEME L.Factorizing personalized Markov chains for next-basket LSSSAN相比AttRec方法,利用长期反馈数 recommendation[Cl//Proceedings of the 19th International 据对长期/一般偏好进行准确表达,并从结构上赋 Conference on World Wide Web.Raleigh,USA,2010: 予了相对重要的短期反馈数据更高的权重;相比 811-820. SHAN方法,LSSSAN考虑了序列性偏好和长期 [7]HIDASI B.TIKK D.General factorization framework for 数据中的相互依赖关系。 context-aware recommendations[J].Data mining and 本文在Tmall和Gowalla上对LSSSAN进行 knowledge discovery,2016,30(2):342-371 训练和测试,其效果整体优于其他先进的方案。 [8]HE RUINING,MCAULEY J.Fusing similarity models with Markov chains for sparse sequential recommenda- 且由于Gowalla数据集的反馈数据相互依赖性和 tion[C]//Proceedings of the 2016 IEEE 16th International 顺序相关性严格于Tmall数据集,模型在Gowalla Conference on Data Mining.Barcelona,Spain,2016: 上表现优于在Tmal上的表现,表明模型擅长于 191-200 处理相对严格的相互依赖关系和顺序相关性的数 [9]HIDASI B.KARATZOGLOU A,BALTRUNAS L,et al 据,也表明模型可能会因为数据集数据的弱相互 Session-based recommendations with recurrent neural net- 依赖性和弱顺序相关性而出现不稳定的情况。同 works[Cl//Proceedings of the 4th International Conference 时本文通过消融实验验证了模型结构的合理性, on Learning Representations.San Juan,Puerto Rico,2016: 并给出了当数据出现明显的弱相互依赖性和弱顺 1-10. 序相关性时的候选方案。 [10]WU Chaoyuan,AHMED A,BEUTEL A,et al.Recurrent LSSSAN在实际应用上可为众多互联网应用 recommender networks[C]//Proceedings of the 10th ACM 提供推荐模型,尤其在数据具有强相互依赖性和 International Conference on Web Search and Data Min- 顺序相关性的互联网应用上将会保证可靠的性 ing.Cambridge,UK,2017:495-503. [11]TANG Jiaxi,BELLETTI F,JAIN S,et al.Towards neur- 能;未来的工作会考虑在LSSSAN的基础上尝试 采用内存机制以提高性能,并在更多的数据集上 al mixture recommender for long range dependent user sequences[C]//Proceedings of World Wide Web Confer- 测试模型性能。 ence.San Francisco,USA,2019:1782-1793 参考文献: [12]ZHOU Guorui,ZHU Xiaoqiang,SONG Chenru,et al. Deep interest network for click-through rate prediction[Cl/ [1]孙宏超.阿里巴巴发布2020财年第三季度财报:收入增 Proceedings of the 24th ACM SIGKDD International 长38%,年活跃用户达7亿[EB/OL].[2020-02-13] Conference on Knowledge Discovery Data Mining. kuaibao.qq.com/s/20200213A0PEAW00 London,UK,2018:1059-1068. [2]WANG Shoujin,HU Liang,WANG Yan,et al.Sequential [13]ZHANG Shuai,TAY Y,YAO Lina,et al.2019.Next recommender systems:challenges,progress and item recommendation with self-attentive metric prospects[C]//Proceedings of the 28th International Joint learning[C]//Proceedings of the 33rd AAAI Conference Conference on Artificial Intelligence.Macao,China,2019: on Artificial Intelligence.Hawaii,USA,2019:9. 6332-6338 [14]YING Haochao,ZHUANG Fuzhen,ZHANG Fuzheng, [3]XU Chen,XU Hongteng,ZHANG Yongfeng,et al.Se- et al.Sequential recommender system based on hierarch- quential recommendation with user memory ical attention networks[Cl//Proceedings of the 27th Inter- networks[C]//Proceedings of the 11th ACM International national Joint Conference on Artificial Intelligence Conference on Web Search and Data Mining.Marina Del Stockholm.Sweden.2018:3926-3932Tmall Gowalla 0.5 0.4 0.3 0.2 0.1 召回率 0 20 30 40 50 10 维度 图 7 维度参数对模型的影响 Fig. 7 Impact of dimension parameter 4 结束语 LSSSAN 相比 AttRec 方法,利用长期反馈数 据对长期/一般偏好进行准确表达,并从结构上赋 予了相对重要的短期反馈数据更高的权重;相比 SHAN 方法,LSSSAN 考虑了序列性偏好和长期 数据中的相互依赖关系。 本文在 Tmall 和 Gowalla 上对 LSSSAN 进行 训练和测试,其效果整体优于其他先进的方案。 且由于 Gowalla 数据集的反馈数据相互依赖性和 顺序相关性严格于 Tmall 数据集,模型在 Gowalla 上表现优于在 Tmall 上的表现,表明模型擅长于 处理相对严格的相互依赖关系和顺序相关性的数 据,也表明模型可能会因为数据集数据的弱相互 依赖性和弱顺序相关性而出现不稳定的情况。同 时本文通过消融实验验证了模型结构的合理性, 并给出了当数据出现明显的弱相互依赖性和弱顺 序相关性时的候选方案。 LSSSAN 在实际应用上可为众多互联网应用 提供推荐模型,尤其在数据具有强相互依赖性和 顺序相关性的互联网应用上将会保证可靠的性 能;未来的工作会考虑在 LSSSAN 的基础上尝试 采用内存机制以提高性能,并在更多的数据集上 测试模型性能。 参考文献: 孙宏超. 阿里巴巴发布 2020 财年第三季度财报: 收入增 长 38%, 年活跃用户达 7 亿 [EB/OL]. [2020-02-13]. kuaibao.qq.com/s/20200213A0PEAW00 [1] WANG Shoujin, HU Liang, WANG Yan, et al. Sequential recommender systems: challenges, progress and prospects[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao, China, 2019: 6332−6338. [2] XU Chen, XU Hongteng, ZHANG Yongfeng, et al. Se￾quential recommendation with user memory networks[C]//Proceedings of the 11th ACM International Conference on Web Search and Data Mining. Marina Del [3] Rey, USA, 2018: 108−116. KOREN Y. Collaborative filtering with temporal dynam￾ics[C]//Proceedings of the 15th ACM SIGKDD Interna￾tional Conference on Knowledge Discovery and Data Min￾ing. Paris, France, 2009: 447−456. [4] GARCIN F, DIMITRAKAKIS C, FALTINGS B. Person￾alized news recommendation with context trees[C]//Pro￾ceedings of the 7th ACM Conference on Recommender Systems. Hong Kong, China, 2013: 105−112. [5] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C]//Proceedings of the 19th International Conference on World Wide Web. Raleigh, USA, 2010: 811−820. [6] HIDASI B, TIKK D. General factorization framework for context-aware recommendations[J]. Data mining and knowledge discovery, 2016, 30(2): 342–371. [7] HE RUINING, MCAULEY J. Fusing similarity models with Markov chains for sparse sequential recommenda￾tion[C]//Proceedings of the 2016 IEEE 16th International Conference on Data Mining. Barcelona, Spain, 2016: 191−200. [8] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural net￾works[C]//Proceedings of the 4th International Conference on Learning Representations. San Juan, Puerto Rico, 2016: 1−10. [9] WU Chaoyuan, AHMED A, BEUTEL A, et al. Recurrent recommender networks[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Min￾ing. Cambridge, UK, 2017: 495−503. [10] TANG Jiaxi, BELLETTI F, JAIN S, et al. Towards neur￾al mixture recommender for long range dependent user sequences[C]//Proceedings of World Wide Web Confer￾ence. San Francisco, USA, 2019: 1782−1793. [11] ZHOU Guorui, ZHU Xiaoqiang, SONG Chenru, et al. Deep interest network for click-through rate prediction[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, UK, 2018: 1059−1068. [12] ZHANG Shuai, TAY Y, YAO Lina, et al. 2019. Next item recommendation with self-attentive metric learning[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Hawaii, USA, 2019: 9. [13] YING Haochao, ZHUANG Fuzhen, ZHANG Fuzheng, et al. Sequential recommender system based on hierarch￾ical attention networks[C]//Proceedings of the 27th Inter￾national Joint Conference on Artificial Intelligence. Stockholm, Sweden, 2018: 3926−3932. [14] ·360· 智 能 系 统 学 报 第 16 卷
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有