正在加载图片...
R.J. Kerans, T.A. Parthasarathy /Composites. Part 4 30(1999)521-524 References biomedical applications. Mat Res Soc Symp Proc, Mat Res Soc 995383229-254 [1 Prewo K, Brennan JJ. High-strength silicon carb [14] Cook J, Gordon JE. A mechanism for the control of crack propagation matrix composites. J Mat Sci 1980; 15(2): 46 in all-brittle systems. Proc R Soc Lond 1964: A282: 508-520 [2] Evans AG, Zok FW. Review: the physics and of fibre. [15] He MY, Hutchinson Jw. Crack deflection at an interface between inforced brittle matrix composites. J Mat 29:3857 dissimilar elastic materials. Int J Solids Structures 1989; 25(9) 1053-1087 3] Kerans R, Hay Rs, Pagano NJ, Parthasarathy TA. The role of [16 He MY, Evans AG, Hutchinson Jw. Crack deflection at an interface between dissimilar elastic materials: role of residual stresses. Int J 1989,68(2)429-442 Solids Structures 1994: 31(24): 3443-3455 [4]Kerans R. Issues in the control of fiber/matrix interfaces in ceramic [17] Pagano NJ, Brown Ill HW. The full cell cracking mode in unidirec- composites. Scripta Metall Mat 1994, 31(8): 1079-1085 nal brittle matrix composites. Composites 1993: 24(2): 69-83 [5] Cao HC, Bischoff E, Sbaizero O, Ruhle M, Evans AG, Marshall DB [18 Pagano NJ. On the micromechanical failure modes in a class of ideal Brennan JJ. Effect of interfaces on the properties of fiber-reinforced brittle matrix composites part 1: coated fiber composites. Composites ramics. J Am Ceram Soc 1990; 73(6): 1691-1699 Part B19982913:93-119 [6]Droillard C, Lamon J. Fracture toughness of 2D woven SiC/SiC [19]Lee W, Howard SJ, Clegg WJ. Growth of interface defects and its mposites with multilayered interphases. J Am Ceram Soc effect on crack deflection and toughening criteria. Acta Mater 1996;79(4):849-85 996;44(10:3905-3922. [7 Droillard C, Lamon J, Bourrat X Strong interfaces in CMCs, condi- [20 Droillard C. Ph. D. thesis, University of bordeaux tion for efficient multilayered interphases. Mat Res Soc Symp Proc (21 Rebillat F, Lamon J, Naslain R, Lara-Curzio E, Fe Mat Res soc1995;365:371-376 TM. Interfacial bond strength in nicalon/C/SiC [8)Naslain R. Fiber-matrix interphases and interfaces in ceramic matrix died by single-fiber push-out tests. J Am Ceram Soc omposites processed by CVI Composite Interfaces 1993 1(3): 253 1(4):965-978 [22 Pagano NJ, Dutton RE, Kim RY, Ultimate tension failure of borosl- [9 Lamon J. Interfaces and interfacial mechanics: influence on the ate glass-SiC fiber unidirectional composites. J Am Ceram Soc, in mechanical behavior of ceramic matrix composites. Journal de Physi- que IV, Coloque C7, supplement to Journal de Physique Ill [23] Hu Ms, Thouless MD, Evans AG. The decohesion of thin films from 1993:3:1607-1616 brittle substrates. Acta Metall 1988: 36(5): 1301-1307 10] Lissart N, Lamon J. Damage and failure in ceramic matrix minicom- [24] Kerans RI, Parthasarathy TA. Theoretical analysis of the fiber pullout posites: experimental study and model. Acta Mater 1997; 45(3): 1025- and pushout tests. J Am Ceram Soc 1991: 74(7): 1585-1596 [25]Jero PD, Kerans R. The contribution of interfacial roughness to 11] Kerans R, Parthasarathy TA, Rebillat F, Lamon J. Interface proper- sliding friction of ceramic fibers in a glass matrix. Scripta Metall es in high strength NICALon"/C/SiC composites as determined by Mater1991;24:2315-231 ough surface analysis of fiber pushout tests. J Am Ceram Soc 1998 [26 Jero PD, Kerans R, Parthasarathy TA. Effect of interfacial roughness l(7):1881-1887 on the frictional stress measured using pushout tests. J Am Ceramic 12 Sakai M, Bradt RC, Fischbach DB Fracture toughness anisotropy of a Soc1991;74(11)2793-2801 pyrolytic carbon. J Mat Sci 1986, 21: 1491-1501 27] Parthasarathy TA, Marshall DB, Kerans RJ. Analysis of the effect of 3] Ritchie RO, Dauskardt RH, Gerberich ww, Strojny A, Lilleodden E interfacial roughness on fiber debonding and sliding in brittle matrix Fracture, fatigue and indentation behavior of pyrolytic carbon for composites. Acta Metall Mater 1994; 42(11): 3773-3784References [1] Prewo K, Brennan JJ. High-strength silicon carbide fiber-reinforced glass matrix composites. J Mat Sci 1980;15(2):463–468. [2] Evans AG, Zok FW. Review: the physics and mechanics of fibre￾reinforced brittle matrix composites. J Mat Sci 1994;29:3857– 3896. [3] Kerans RJ, Hay RS, Pagano NJ, Parthasarathy TA. The role of the fiber-matrix interface in ceramic composites. Ceramic Bull 1989;68(2):429–442. [4] Kerans RJ. Issues in the control of fiber/matrix interfaces in ceramic composites. Scripta Metall Mat 1994;31(8):1079–1085. [5] Cao HC, Bischoff E, Sbaizero O, Ruhle M, Evans AG, Marshall DB, Brennan JJ. Effect of interfaces on the properties of fiber-reinforced ceramics. J Am Ceram Soc 1990;73(6):1691–1699. [6] Droillard C, Lamon J. Fracture toughness of 2D woven SiC/SiC composites with multilayered interphases. J Am Ceram Soc 1996;79(4):849–858. [7] Droillard C, Lamon J, Bourrat X. Strong interfaces in CMCs, condi￾tion for efficient multilayered interphases. Mat Res Soc Symp Proc, Mat Res Soc 1995;365:371–376. [8] Naslain R. Fiber-matrix interphases and interfaces in ceramic matrix composites processed by CVI. Composite Interfaces 1993;1(3):253– 286. [9] Lamon J. Interfaces and interfacial mechanics: influence on the mechanical behavior of ceramic matrix composites. Journal de Physi￾que IV, Coloque C7, supplement to Journal de Physique III 1993;3:1607–1616. [10] Lissart N, Lamon J. Damage and failure in ceramic matrix minicom￾posites: experimental study and model. Acta Mater 1997;45(3):1025– 1044. [11] Kerans RJ, Parthasarathy TA, Rebillat F, Lamon J. Interface proper￾ties in high strength NICALONe/C/SiC composites as determined by rough surface analysis of fiber pushout tests. J Am Ceram Soc 1998; 81(7):1881–1887. [12] Sakai M, Bradt RC, Fischbach DB. Fracture toughness anisotropy of a pyrolytic carbon. J Mat Sci 1986;21:1491–1501. [13] Ritchie RO, Dauskardt RH, Gerberich WW, Strojny A, Lilleodden E. Fracture, fatigue and indentation behavior of pyrolytic carbon for biomedical applications. Mat Res Soc Symp Proc, Mat Res Soc 1995;383:229–254. [14] Cook J, Gordon JE. A mechanism for the control of crack propagation in all-brittle systems. Proc R Soc Lond 1964;A282:508–520. [15] He MY, Hutchinson JW. Crack deflection at an interface between dissimilar elastic materials. Int J Solids Structures 1989;25(9): 1053–1087. [16] He MY, Evans AG, Hutchinson JW. Crack deflection at an interface between dissimilar elastic materials: role of residual stresses. Int J Solids Structures 1994;31(24):3443–3455. [17] Pagano NJ, Brown III HW. The full cell cracking mode in unidirec￾tional brittle matrix composites. Composites 1993;24(2):69–83. [18] Pagano NJ. On the micromechanical failure modes in a class of ideal brittle matrix composites part I: coated fiber composites. Composites Part B 1998;2913:93–119. [19] Lee W, Howard SJ, Clegg WJ. Growth of interface defects and its effect on crack deflection and toughening criteria. Acta Mater 1996;44(10):3905–3922. [20] Droillard C. Ph.D. thesis, University of Bordeaux, France, 1993. [21] Rebillat F, Lamon J, Naslain R, Lara-Curzio E, Ferber MK, Besmann TM, Interfacial bond strength in nicalon/C/SiC composite materials as studied by single-fiber push-out tests. J Am Ceram Soc 1998;81(4):965–978. [22] Pagano NJ, Dutton RE, Kim RY, Ultimate tension failure of borosi￾licate glass-SiC fiber unidirectional composites. J Am Ceram Soc, in review. [23] Hu MS, Thouless MD, Evans AG. The decohesion of thin films from brittle substrates. Acta Metall 1988;36(5):1301–1307. [24] Kerans RJ, Parthasarathy TA. Theoretical analysis of the fiber pullout and pushout tests. J Am Ceram Soc 1991;74(7):1585–1596. [25] Jero PD, Kerans RJ. The contribution of interfacial roughness to sliding friction of ceramic fibers in a glass matrix. Scripta Metall Mater 1991;24:2315–2318. [26] Jero PD, Kerans RJ, Parthasarathy TA. Effect of interfacial roughness on the frictional stress measured using pushout tests. J Am Ceramic Soc 1991;74(11):2793–2801. [27] Parthasarathy TA, Marshall DB, Kerans RJ. Analysis of the effect of interfacial roughness on fiber debonding and sliding in brittle matrix composites. Acta Metall Mater 1994;42(11):3773–3784. 524 R.J. Kerans, T.A. Parthasarathy / Composites: Part A 30 (1999) 521–524
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有