正在加载图片...
·176· 工程科学学报,第40卷,第2期 (3)在80.0℃下,质量分数为58.8%的CaCL,- 2016,94:228 LiBr(1.35:1)/H,0吸收溶液对316L和紫铜的腐蚀 [11]He Z N,Ge H C,Jiang F L,et al.A comparison of optical per- formance between evacuated collector tubes with flat and semicy- 速率分别为1.51uma-和2.71um·a1,完全满足 lindric absorbers.Sol Energy,1997.60(2):109 工程应用的实际要求.此外,CaCL,-LiBr(1.35:1)/ [12]Florides GA,Kalogirou S A,Tassou S A,et al.Modelling and H,0的成本显著低于LiBr/H,0. simulation of an absorption solar cooling system for Cyprus.Sol (4)采用CaCL,-LiBr(1.35:1)/H,0作为太阳 Energy,2002,72(1):43 [13]Li J H.Ma W B,Jiang Q.et al.100 kW solar air conditioning 能单级吸收式制冷循环的工质对制取7.0℃冷量 system.Acta Energiae Solaris Sinica,1999.20(3):239 时,所需的太阳能集热温度为81.8℃,比同一工况 (李戬洪,马伟斌,江晴,等.100kW太阳能制冷空调系统. 条件下采用LiBr/H,0时低6.2℃.这是因为 太阳能学报,1999,20(3):239) CaCL,-LiBr(1.35:1)/H,0作为吸收式制冷循环的 [14]Luo C H.Zhang Y,Su QQ.Saturated vapor pressure,crystalli- 工质对时的吸收特性优于LiBr/H,O. zation temperature and corrosivity of LiBr-[BMIM Cl/H,O working pair.CIESC J.2016,67(4):1110 (罗春欢,张渊,苏庆泉.LiBr-[BMM]C/HO工质对的饱和蒸 参考文献 气压,结晶温度和腐蚀性.化工学报,2016,67(4):1110) [1]Xu Z Y,Wang R Z.Absorption refrigeration cycles:categorized [15]Luo C H,Su QQ,Mi W L.Solubilities,vapor pressures,densi- based on the cycle construction.Int J Refrig,2016,62:114 ties,viscosities,and specific heat capacities of the LiNO/H2O [2]Yang J B,Geng S B.Present situation and the development of so- binary system.J Chem Eng Data,2013,58(3):625 lar air conditioning technology.Contam Control Air-conditioning [16]Luo C H.Su QQ.Corrosion of carbon steel in concentrated Li- Technol,.2017(1):95 NO solution at high temperature.Corros Sci,2013,74:290 (杨俊斌,耿世彬.太阳能空调的技术现状与发展.洁净与空 [17]He Q,Li Y,Wu L P.Central Air Conditioning Data Handbook. 调技术,2017(1):95) Beijing:China Machine Press,2005 [3]Prasartkaew B.Performance test of a small size LiBr-H2O absorp (何青,李毓,吴丽萍。中央空调常用数据速查手册.北京: tion chiller.Energy Procedia,2014,56:487 机械工业出版社,2005) [4]Li Z Y,Jing Y,Liu J P.Thermodynamic study of a novel solar Li- [18]Liu CQ,Ma LX,Liu J.Chemical and Chemical Properties Data Br/H,O absorption chiller.Energy Buildings,2016,133:565 Sheet:Inorganic Volumes.Beijing:Chemical Industry Press. [5]Leonzio G.Solar systems integrated with absorption heat pumps 2006 and thermal energy storages:state of art.Renewable Sustainable (刘光启,马连湘,刘杰.化学化工物性数据手册:无机卷 Energy Rev,.2017,70:492 北京:化学工业出版社.2006) [6]Xu Z Y,Wang R Z,Wang H B.Experimental evaluation of a var- [19]Safarov JT.Vapor pressure of heat transfer fluids of absorption iable effect LiBr-water absorption chiller designed for high-effi- refrigeration machines and heat pumps:binary solutions of lithi- cient solar cooling system.Int J Refrig,2015,59:135 um nitrate with methanol.Chem Thermodyn,2005,37(12): [7]N'Tsoukpoe K E,Perier-Muzet M,Le Pierre's N,et al.Thermo- 1261 dynamic study of a LiBr-H20 absorption process for solar heat [20]Seidell A.Solubilities of Inorganic and Organic Compounds.3rd storage with crystallisation of the solution.Sol Energy,2014. Ed.New York:D.Van Nostrand Company Inc,1952 104:2 [21]Verevkin S,Safarov J,Bich E,et al.Study of vapour pressure of [8]Zheng D X,Dong L,Huang W J,et al.A review of imidazolium lithium nitrate solutions in ethanol.Chem Thermodyn,2006, ionic liquids research and development towards working pair of ab- 38(5):611 sorption cycle.Renewable Sustainable Energy Rev,2014,37:47 [22]Kim J S,Lee H.Solubilities,vapor pressure,densities,and vis- [9]Wang RZ,Dai Y J.Solar Energy Refrigeration.Beijing:Chemi- cosities of the LiBr Lil HO CH2)3 OH H2O system.J cal Industry Press.2007 Chem Eng Data.2001.46(1):79 (王如竹,代彦军.太阳能制冷.北京:化学工业出版社, [23]Chen D,Xie J H.The Technology and Application of Heat 2007) Pump.Beijing:Chemical Industry Press,2008 [10]Ventas R,Lecuona A,Vereda C,et al.Two-stage double-effect (陈东,谢继红.热泵技术及其应用.北京:化学工业出版 ammonia/lithium nitrate absorption cycle.Appl Therm Eng, 社,2008)工程科学学报,第 40 卷,第 2 期 (3) 在 80郾 0 益 下,质量分数为 58郾 8% 的CaCl 2 鄄鄄 LiBr(1郾 35颐 1) / H2O 吸收溶液对 316L 和紫铜的腐蚀 速率分别为 1郾 51 滋m·a - 1和 2郾 71 滋m·a - 1 ,完全满足 工程应用的实际要求. 此外,CaCl 2 鄄鄄 LiBr(1郾 35颐 1) / H2O 的成本显著低于 LiBr/ H2O. (4)采用 CaCl 2 鄄鄄 LiBr(1郾 35颐 1) / H2O 作为太阳 能单级吸收式制冷循环的工质对制取 7郾 0 益 冷量 时,所需的太阳能集热温度为 81郾 8 益 ,比同一工况 条件 下 采 用 LiBr/ H2O 时 低 6郾 2 益 . 这 是 因 为 CaCl 2 鄄鄄LiBr(1郾 35颐 1) / H2O 作为吸收式制冷循环的 工质对时的吸收特性优于 LiBr/ H2O. 参 考 文 献 [1] Xu Z Y, Wang R Z. Absorption refrigeration cycles: categorized based on the cycle construction. Int J Refrig, 2016, 62: 114 [2] Yang J B, Geng S B. Present situation and the development of so鄄 lar air conditioning technology. Contam Control Air鄄conditioning Technol, 2017(1): 95 (杨俊斌, 耿世彬. 太阳能空调的技术现状与发展. 洁净与空 调技术, 2017(1): 95) [3] Prasartkaew B. Performance test of a small size LiBr鄄鄄H2O absorp鄄 tion chiller. Energy Procedia, 2014, 56: 487 [4] Li Z Y, Jing Y, Liu J P. Thermodynamic study of a novel solar Li鄄 Br/ H2O absorption chiller. Energy Buildings, 2016, 133: 565 [5] Leonzio G. Solar systems integrated with absorption heat pumps and thermal energy storages: state of art. Renewable Sustainable Energy Rev, 2017, 70: 492 [6] Xu Z Y, Wang R Z, Wang H B. Experimental evaluation of a var鄄 iable effect LiBr鄄鄄 water absorption chiller designed for high鄄effi鄄 cient solar cooling system. Int J Refrig, 2015, 59: 135 [7] N爷Tsoukpoe K E, Perier鄄Muzet M, Le Pierre蒺s N, et al. Thermo鄄 dynamic study of a LiBr鄄鄄 H2O absorption process for solar heat storage with crystallisation of the solution. Sol Energy, 2014, 104: 2 [8] Zheng D X, Dong L, Huang W J, et al. A review of imidazolium ionic liquids research and development towards working pair of ab鄄 sorption cycle. Renewable Sustainable Energy Rev, 2014, 37: 47 [9] Wang R Z, Dai Y J. Solar Energy Refrigeration. Beijing: Chemi鄄 cal Industry Press, 2007 (王如竹, 代彦军. 太阳能制冷. 北京: 化学工业出版社, 2007) [10] Ventas R, Lecuona A, Vereda C, et al. Two鄄stage double鄄effect ammonia / lithium nitrate absorption cycle. Appl Therm Eng, 2016, 94: 228 [11] He Z N, Ge H C, Jiang F L, et al. A comparison of optical per鄄 formance between evacuated collector tubes with flat and semicy鄄 lindric absorbers. Sol Energy, 1997, 60(2): 109 [12] Florides G A, Kalogirou S A, Tassou S A, et al. Modelling and simulation of an absorption solar cooling system for Cyprus. Sol Energy, 2002, 72(1): 43 [13] Li J H, Ma W B, Jiang Q, et al. 100 kW solar air conditioning system. Acta Energiae Solaris Sinica, 1999, 20(3): 239 (李戬洪, 马伟斌, 江晴, 等. 100 kW 太阳能制冷空调系统. 太阳能学报, 1999, 20(3): 239) [14] Luo C H, Zhang Y, Su Q Q. Saturated vapor pressure, crystalli鄄 zation temperature and corrosivity of LiBr鄄鄄 [ BMIM ] Cl / H2O working pair. CIESC J, 2016, 67(4): 1110 (罗春欢, 张渊, 苏庆泉. LiBr鄄鄄[BMIM]Cl/ H2O 工质对的饱和蒸 气压、结晶温度和腐蚀性. 化工学报, 2016, 67(4): 1110) [15] Luo C H, Su Q Q, Mi W L. Solubilities, vapor pressures, densi鄄 ties, viscosities, and specific heat capacities of the LiNO3 / H2O binary system. J Chem Eng Data, 2013, 58(3): 625 [16] Luo C H, Su Q Q. Corrosion of carbon steel in concentrated Li鄄 NO3 solution at high temperature. Corros Sci, 2013, 74: 290 [17] He Q, Li Y, Wu L P. Central Air Conditioning Data Handbook. Beijing: China Machine Press, 2005 (何青, 李毓, 吴丽萍. 中央空调常用数据速查手册. 北京: 机械工业出版社, 2005) [18] Liu G Q, Ma L X, Liu J. Chemical and Chemical Properties Data Sheet: Inorganic Volumes. Beijing: Chemical Industry Press, 2006 (刘光启, 马连湘, 刘杰. 化学化工物性数据手册: 无机卷. 北京: 化学工业出版社, 2006) [19] Safarov J T. Vapor pressure of heat transfer fluids of absorption refrigeration machines and heat pumps: binary solutions of lithi鄄 um nitrate with methanol. J Chem Thermodyn, 2005, 37(12): 1261 [20] Seidell A. Solubilities of Inorganic and Organic Compounds. 3rd Ed. New York: D. Van Nostrand Company Inc, 1952 [21] Verevkin S, Safarov J, Bich E, et al. Study of vapour pressure of lithium nitrate solutions in ethanol. J Chem Thermodyn, 2006, 38(5): 611 [22] Kim J S,Lee H. Solubilities, vapor pressure, densities, and vis鄄 cosities of the LiBr + LiI + HO ( CH2 )3 OH + H2O system. J Chem Eng Data, 2001, 46(1): 79 [23] Chen D, Xie J H. The Technology and Application of Heat Pump. Beijing: Chemical Industry Press, 2008 (陈东, 谢继红. 热泵技术及其应用. 北京: 化学工业出版 社, 2008) ·176·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有