正在加载图片...
K. Konig et al. / Journal of the European Ceramic Sociery 30(2010)1131-1137 1137 6. Fujii, M., Zhang, X, Xie, H, Ago, H, Takahashi, K and Ikuta, T, Measuring 27. Zheng, G.B., Mizuki, H, Sano, H. and Uchiyama, Y, CNT-PyC-SiC/SiC the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett., 2005 double-layer oxidation-protection coating on C/C composite. Carbon, 2008, 95,065502-1-065502-4 46.1792-1828 7. Kim, P, Shi, L, Majumdar, A. P and McEuen, L, Thermal transport mea- 28. Susi, T, Nasibulin, A. G, Jiang, H and Kauppinen, E. I, CVD synthesis of surements of individual multiwalled nanotubes. P/vs. Rev. Lett. 2001. 87 hierarchical 3D MWCNT/carbon-fiber nanostructures. J. Nanomater. 2008 2155021-215502-4. 8. Cho, J and Boccaccini, A.R., Ceramic and glass matrix composites con- 29. Zhang, Q, Qian, w, Xiang. R, Yang, Z, Luo, G, Wang, Y et al, In taining carbon nanotubes. Mater Sci. Forum. 2009. 606 61-77 tu growth of carbon nanotubes on inorganic fibers with different surface 9. Thostenson, E. T. Ren, Z and Chou, T. w. Advances in the science and properties. Mater. Chem. Phys., 2008, 107, 317-321 technology of carbon nanotubes and their composites: a review 30. Boccaccini, A.R., Cho, J, Roether, J. A Thomas, B J C, Minay, EJand Sci. Technol.,2001,61,1899-1912 Shaffer, M.S. P, Electrophoretic deposition of carbon nanotubes. Carbon, 10. Thostenson, E. T. Li, C. and Chou, T. W, Nanocomposites in 2006,44,31493160. Compos. Sci. TechnoL., 2005, 65, 491-516. 31. Thomas. B. J. C. and boccaccini, A. R, Multi-walled carbon nanotube 11. Xia, Z, Riester, L, Curtin, w.A., Li, H, Sheldon, B. W, Liang, J et al. ings using electrophoretic deposition(EPD).J. Am. Ceram. Soc., 2005, Direct observation of toughening mechanisms in carbon nanotube ceramic 88.980_982 posites. Acta Mater, 2004. 52, 931-944 32. Lima. M. D, de Andrade, M.J., Bergmann, C. P and Rotha. S, Thir 12. Coleman, J N, Khan, U. Blau. W.J. and Gun ko Y.K., Small but strong: a conductive, carbon nanotube networks over transparent substrates by elec- review of the mechanical properties of carbon nanotube-polymer compos- trophoretic deposition. J. Mater. Chen, 2008, 18, 776-779 ites. Carbon,2006,44,1624165 33. Kaya, C, Electrophoretic deposition of carbon nanotube-reinforced hydrox 13. Shaffer, M. and Kinloch, L A Prospects for nanotube and nanofibre com- yapatite bioactive layers on Ti-6AHV alloys for biomedical application posites. Compos. Sci. TechnoL, 2004, 64, 2281-2282 Ceran.ln.,2008,34,1843-1847 14. Boccaccini, A.R. Acevedo, D.R., Brusatin, G and Colombo, P, Borosil- 34. Singh, I, Kaya, C, Shaffer, M. S. P, Thomas, J. B. C. and Boccaccini, icate glass matrix composites containing multi-wall carbon nanotubes. J. A.R., Bioactive ceramic coatings containing carbon nanotubes on metallic Eur Ceram.Soc,2005,25,1515-1523 ubstrates by electrophoretic deposition. J Mater Sci., 2006, 41, 8144-8151 15. Boccaccini, A.R., Thomas, B. J. C. Brusatin, G. and Colombo, P, 35. Chicatun, F, Cho, J, Schaab, S, Brusatin, G, Colombo. P, Roether, J Mechanical and electrical properties of hot-pressed borosilicate glass matr A. et al, Carbon nanotube deposits and CNT/SiOz composite coatings by composites containing multi-wall carbon nanotubes. J. Mater. Sci., 2007, 42, ectrophoretic deposition. Adv. App. Ceram, 2007, 106, 186-195. 2030-2036. 36. Mahajan, S. V, Hasan, S A, Cho, J, Shaffer, M.S.P., Boccaccini, ARand 16. Arvanitelis, C, Jayaseelan, D. D, Cho, J. and Boccaccini, A.R., Car- Dickerson, J H, Carbon nanotube-nanocrystal heterostructures fabricated bon nanotube-SiO2 composites by colloidal processing. Adv. Appl. Ceram. by electrophoretic deposition. Nanotechnology, 2008, 19, 1-8 2008.107.155-158 37. Cho, J, Schaab, S, Roether, J. A and Boccaccini, A.R. Nanostructured 17. Boccaccini, A.R. Chicatun, F, Cho, J, Bretcanu, O, Roether. J. A. Novak arbon nanotube/TiO2 composite coatings using electrophoretic deposition S. et al, Carbon nanotube coatings on bioglass-based tissue engineering (EPD). J Nanoparticle Res, 2008, 10, 99-105. scaffolds. Ad. Funct. Mater. 2007. 17. 2815-2822. 38. Lin, C, Han, H, Zhang, F. and Li, A, Electrophoretic deposition of Cho, J. Cannio, M. and Boccaccini, A.R., The electrophoretic deposition HA/MWNTs composite coating for biomaterial applications. J. Mater. Sci of Bioglass /carbon nanotube composite layers for bioactive coatings. Int. Mater Med.,2008,19,2569-2574. J Mater Prod. Technol. 2009. 35 260-270 39. Girishkumar, G, Rettker. M, Underhile, R, Binz. D 19. Cha, SI, Kim, K. T. Lee, K.H., Mo, C. B and Hong, S H, Strengthen- McGinn, Petal, Single-wall carbon nanotube-based proto and toughening of carbon nanotube reinforced alumina nanocomposi brane assembly for hydrogen fuel cells. Langmuir, 2005, abricated by molecular level mixing process. Scripta Mater, 2005, 53, 40. Novak, S, Konig, K, Ivekovic, A and Boccaccini, A.R., 3-D 93-797 fabric for the production of SiC/SiC composites by means of electrophoretic 20. Kumari, L, Zhang, T, Du, G. H, Li, w.Z., Wang, Q. W, Datye, Aet deposition. Key Eng Mater, 2009, 412, 237-242. al., Thermal properties of CNT-alumina nanocomposites. Compos. Sci. 41. Toplisek, T, Drazic, G, Novak, S and Kobe, S, Electron microscopy and Technol.,2008,68,2178-218 icroanalysis of the fiber/matrix interface in Sic-based ceramic composite 21. Ma, R. Z, Wu, J, Wei, B Q, Liang, J and Wu, D. H, Processing and material for use in a fusion reactor application. Scanning, 2008, 30, 35-40 properties of carbon nanotubes-nano-SiC ceramic J Mater Sci, 1998, 33, 42. Novak, S, Rade, K, Konig, K. and Boccaccini, A.R. Electrophoretic 5243-5246 deposition in the production of SiC/SiC composites for fusion reactor appli 22. Gao, L, Jiang, L and Sun, J, Carbon nanotube-ceramic composites J. cations. J. Eur Ceram. Soc.. 2008 28. 2801-2807. Electroceram. 2006. 17.51-55 43. Boccaccini, A. R, MacLaren, 1. Lewis, M. H. and Ponton, C. B. elec 23. Thostenson, E. T, Karandikar, P G. and Chou, T.-w.. Fabrication and char- trophoretic deposition infiltration of 2-D woven SiC fibre mats with mixed acterization of reaction bonded silicon carbide/carbon nanotube composites. sols of mullite composition. J. Eur. Ceram. Soc., 1997, 17, 1545-1550 Phys.D: AppL Phys,2005,38,3962-3965 44. Novak, S, Mejak, K. and Drazic, G The preparation of LPS SiC-fibre- 24. Wang. Y. Voronin. G. A. Zerda, T. w. and Winiarski, A. SIC-CNT nanocomposites: high pressure reaction synthesis and characterization. J. 2006,41,8093-8100. Phys. Condens Matter, 2006, 18. 275-282. 45. Stoll, E, Mahr, P, Kruger, H.-G. Kern, H, Thomas, B. J. C. and Boc- 25. Balazs, C, Fenyi, B, Hegman, N, Kover, Z, Weber, F, Vertes, Z. et acini, A.R., Fabrication technologies for oxide-oxide ceramic matrix al. Development of CNT/Si3 N4 composites with improved mechanical and composites based on electrophoretic deposition. J. Eur. Ceram. Soc., 2006, electrical properties. Composites Part B, 2006, 37, 418-424. 26. De Riccardis, M. F, Carbone, D, Makris, T D Giorgi, R, Lisi, N and 46 Drazic, G, Novak, S, Daneu, N and Koenig, K Preparation and analytical Salernitano, E, Anchorage of carbon nanotubes grown on carbon fibres. of SiC continuous fiber ceramic composite. J. Mater Carbon,2006,44,671-674 Eng. Perform,2005,14.424429K. König et al. / Journal of the European Ceramic Society 30 (2010) 1131–1137 1137 6. Fujii, M., Zhang, X., Xie, H., Ago, H., Takahashi, K. and Ikuta, T., Measuring the thermal conductivity of a single carbon nanotube. Phys. Rev. Lett., 2005, 95, 065502-1–065502-4. 7. Kim, P., Shi, L., Majumdar, A. P. and McEuen, L., Thermal transport mea￾surements of individual multiwalled nanotubes. Phys. Rev. Lett., 2001, 87, 215502-1–215502-4. 8. Cho, J. and Boccaccini, A. R., Ceramic and glass matrix composites con￾taining carbon nanotubes. Mater. Sci. Forum, 2009, 606, 61–77. 9. Thostenson, E. T., Ren, Z. and Chou, T. W., Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol., 2001, 61, 1899–1912. 10. Thostenson, E. T., Li, C. and Chou, T. W., Nanocomposites in context. Compos. Sci. Technol., 2005, 65, 491–516. 11. Xia, Z., Riester, L., Curtin, W. A., Li, H., Sheldon, B. W., Liang, J. et al., Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites. Acta Mater., 2004, 52, 931–944. 12. Coleman, J. N., Khan, U., Blau, W. J. and Gun’ko, Y. K., Small but strong: a review of the mechanical properties of carbon nanotube–polymer compos￾ites. Carbon, 2006, 44, 1624–1652. 13. Shaffer, M. and Kinloch, I. A., Prospects for nanotube and nanofibre com￾posites. Compos. Sci. Technol., 2004, 64, 2281–2282. 14. Boccaccini, A. R., Acevedo, D. R., Brusatin, G. and Colombo, P., Borosil￾icate glass matrix composites containing multi-wall carbon nanotubes. J. Eur. Ceram. Soc., 2005, 25, 1515–1523. 15. Boccaccini, A. R., Thomas, B. J. C., Brusatin, G. and Colombo, P., Mechanical and electrical properties of hot-pressed borosilicate glass matrix composites containing multi-wall carbon nanotubes. J. Mater. Sci., 2007, 42, 2030–2036. 16. Arvanitelis, C., Jayaseelan, D. D., Cho, J. and Boccaccini, A. R., Car￾bon nanotube–SiO2 composites by colloidal processing. Adv. Appl. Ceram., 2008, 107, 155–158. 17. Boccaccini, A. R., Chicatún, F., Cho, J., Bretcanu, O., Roether, J. A., Novak, S. et al., Carbon nanotube coatings on bioglass-based tissue engineering scaffolds. Adv. Funct. Mater., 2007, 17, 2815–2822. 18. Cho, J., Cannio, M. and Boccaccini, A. R., The electrophoretic deposition of Bioglass®/carbon nanotube composite layers for bioactive coatings. Int. J. Mater. Prod. Technol., 2009, 35, 260–270. 19. Cha, S. I., Kim, K. T., Lee, K. H., Mo, C. B. and Hong, S. H., Strengthen￾ing and toughening of carbon nanotube reinforced alumina nanocomposite fabricated by molecular level mixing process. Scripta Mater., 2005, 53, 793–797. 20. Kumari, L., Zhang, T., Du, G. H., Li, W. Z., Wang, Q. W., Datye, A. et al., Thermal properties of CNT–alumina nanocomposites. Compos. Sci. Technol., 2008, 68, 2178–2183. 21. Ma, R. Z., Wu, J., Wei, B. Q., Liang, J. and Wu, D. H., Processing and properties of carbon nanotubes–nano-SiC ceramic. J. Mater. Sci., 1998, 33, 5243–5246. 22. Gao, L., Jiang, L. and Sun, J., Carbon nanotube–ceramic composites. J. Electroceram., 2006, 17, 51–55. 23. Thostenson, E. T., Karandikar, P. G. and Chou, T.-W., Fabrication and char￾acterization of reaction bonded silicon carbide/carbon nanotube composites. J. Phys. D: Appl. Phys., 2005, 38, 3962–3965. 24. Wang, Y., Voronin, G. A., Zerda, T. W. and Winiarski, A., SiC–CNT nanocomposites: high pressure reaction synthesis and characterization. J. Phys.: Condens. Matter, 2006, 18, 275–282. 25. Balázsi, C., Fényi, B., Hegman, N., Kövér, Z., Weber, F., Vertesy, Z. et al., Development of CNT/Si3N4 composites with improved mechanical and electrical properties. Composites Part B, 2006, 37, 418–424. 26. De Riccardis, M. F., Carbone, D., Makris, T. D., Giorgi, R., Lisi, N. and Salernitano, E., Anchorage of carbon nanotubes grown on carbon fibres. Carbon, 2006, 44, 671–674. 27. Zheng, G.-B., Mizuki, H., Sano, H. and Uchiyama, Y., CNT–PyC–SiC/SiC double-layer oxidation-protection coating on C/C composite. Carbon, 2008, 46, 1792–1828. 28. Susi, T., Nasibulin, A. G., Jiang, H. and Kauppinen, E. I., CVD synthesis of hierarchical 3D MWCNT/carbon-fiber nanostructures. J. Nanomater., 2008, 1–7. 29. Zhang, Q., Qian, W., Xiang, R., Yang, Z., Luo, G., Wang, Y. et al., In situ growth of carbon nanotubes on inorganic fibers with different surface properties. Mater. Chem. Phys., 2008, 107, 317–321. 30. Boccaccini, A. R., Cho, J., Roether, J. A., Thomas, B. J. C., Minay, E. J. and Shaffer, M. S. P., Electrophoretic deposition of carbon nanotubes. Carbon, 2006, 44, 3149–3160. 31. Thomas, B. J. C. and Boccaccini, A. R., Multi-walled carbon nanotube coatings using electrophoretic deposition (EPD). J. Am. Ceram. Soc., 2005, 88, 980–982. 32. Lima, M. D., de Andrade, M. J., Bergmann, C. P. and Rotha, S., Thin, conductive, carbon nanotube networks over transparent substrates by elec￾trophoretic deposition. J. Mater. Chem., 2008, 18, 776–779. 33. Kaya, C., Electrophoretic deposition of carbon nanotube-reinforced hydrox￾yapatite bioactive layers on Ti–6Al–4V alloys for biomedical applications. Ceram. Int., 2008, 34, 1843–1847. 34. Singh, I., Kaya, C., Shaffer, M. S. P., Thomas, J. B. C. and Boccaccini, A. R., Bioactive ceramic coatings containing carbon nanotubes on metallic substrates by electrophoretic deposition. J. Mater. Sci., 2006, 41, 8144–8151. 35. Chicatún, F., Cho, J., Schaab, S., Brusatin, G., Colombo, P., Roether, J. A. et al., Carbon nanotube deposits and CNT/SiO2 composite coatings by electrophoretic deposition. Adv. Appl. Ceram., 2007, 106, 186–195. 36. Mahajan, S. V., Hasan, S. A., Cho, J., Shaffer, M. S. P., Boccaccini, A. R. and Dickerson, J. H., Carbon nanotube–nanocrystal heterostructures fabricated by electrophoretic deposition. Nanotechnology, 2008, 19, 1–8. 37. Cho, J., Schaab, S., Roether, J. A. and Boccaccini, A. R., Nanostructured carbon nanotube/TiO2 composite coatings using electrophoretic deposition (EPD). J. Nanoparticle Res., 2008, 10, 99–105. 38. Lin, C., Han, H., Zhang, F. and Li, A., Electrophoretic deposition of HA/MWNTs composite coating for biomaterial applications. J. Mater. Sci.: Mater. Med., 2008, 19, 2569–2574. 39. Girishkumar, G., Rettker, M., Underhile, R., Binz, D., Vinodgopal, K., McGinn, P. et al., Single-wall carbon nanotube-based proton exchange mem￾brane assembly for hydrogen fuel cells. Langmuir, 2005, 21, 8487–8494. 40. Novak, S., König, K., Ivekovic, A. and Boccaccini, A. R., Infiltration of a 3-D ˇ fabric for the production of SiC/SiC composites by means of electrophoretic deposition. Key Eng. Mater., 2009, 412, 237–242. 41. Toplisek, T., Dra ˇ ziˇ c, G., Novak, S. and Kobe, S., Electron microscopy and ´ microanalysis of the fiber/matrix interface in SiC-based ceramic composite material for use in a fusion reactor application. Scanning, 2008, 30, 35–40. 42. Novak, S., Rade, K., König, K. and Boccaccini, A. R., Electrophoretic deposition in the production of SiC/SiC composites for fusion reactor appli￾cations. J. Eur. Ceram. Soc., 2008, 28, 2801–2807. 43. Boccaccini, A. R., MacLaren, I., Lewis, M. H. and Ponton, C. B., Elec￾trophoretic deposition infiltration of 2-D woven SiC fibre mats with mixed sols of mullite composition. J. Eur. Ceram. Soc., 1997, 17, 1545–1550. 44. Novak, S., Mejak, K. and Draziˇ c, G., The preparation of LPS SiC-fibre- ´ reinforced SiC ceramics using electrophoretic deposition. J. Mater. Sci., 2006, 41, 8093–8100. 45. Stoll, E., Mahr, P., Krüger, H.-G., Kern, H., Thomas, B. J. C. and Boc￾caccini, A. R., Fabrication technologies for oxide–oxide ceramic matrix composites based on electrophoretic deposition. J. Eur. Ceram. Soc., 2006, 26, 1567–1576. 46. Draziˇ c, G., Novak, S., Daneu, N. and Koenig, K., Preparation and analytical ´ electron microscopy of SiC continuous fiber ceramic composite. J. Mater. Eng. Perform., 2005, 14, 424–429
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有