式中为蒸发材料的摩尔质量,P为蒸发材料的饱和蒸气压,T为蒸发材料温度.材料的饱 和蒸气压随温度的上升而迅速增大,温度变化10%,饱和蒸气压就要变化约一个数量级.由 此可见,蒸发源温度的微小变化可引起蒸发速率的很大变化。因此,在蒸发镀膜过程中, 要想控制蒸发速率,必须精确控制蒸发源的温度 蒸发镀膜最常用的加热方法是电阻大电流加热 采用钨、组、组、铂等高熔点化学性 能稳定的金属,做成适当形状的加热源,其上装入待蒸发材料,让电流通过,对蒸发材料 进行直接加热蒸发,或者把待蒸发材料放入氧化铝、氮化硼或石墨等坩埚中进行间接加热 蒸发,例如蒸镀铝膜,铝的熔点为659℃,到1100℃时开始迅速蒸发,常选用色丝作为 加热源,钨的熔化温度为3380℃. 在真空镀 中,飞抵基片的气化原子或分子,除一部分被反射外,其于的被吸附在基 片的表面上。被吸附的原子或分子在基片表面上进行扩散运动,一部分在运动中因相互础 撞而结聚成团,另一部分经过一段时间的滞留后,被蒸发而离开基片表面。聚团可能会与 表面扩散原子或分子发生碰撞时捕获原子或分子而增大,也可能因单个原子或分子脱离而 变小,当聚团增大到一定程度时,便会形成稳定的核,核再捕获到飞抵的原子或分子,或 在基片表面进行扩散运动的原子或分 子就会生长. 在生长过程中核与核合成而形成网络结 构,网络被填实即生成连续的薄膜。显然,基片的表面条件(例如清洁度和不完整性)、基 片的温度以及薄膜的沉积速率都将影响薄膜的质量, 5。千涉法测量膜厚 干涉法测量膜厚的理论基础是光的干涉效应.对于3~2000nm的膜厚,一般可采用干 涉显微镜来测量.干涉显微镜可视为迈克尔逊干涉仪和显微镜的组合,其简化光路如图4 所示 由光源发出的 一束光经 光镜和分光镜后分成强度相 的E C两束光,分别岛 射镜和样品反射后汇合发生干涉。两条光路光程基本相等,当它们间有一夹角时,就可能 产生明暗相间的干涉条纹(等厚干涉).将薄膜制成台阶状,则光束C中从薄膜反射和从 基片表面反射的光程不同,它们和光束B干涉时,由于光程差而造成同一级次的干涉条纹 平移,如图5所示.由此可求出台阶高度(即薄膜厚度)为 d=兴 (4) 式中△为同一级次干涉条纹(要认准)的移动距离,1为明暗条纹间距,它们由测微目镜 测出,入为单色光源的波长.由于单色光形成的是亮暗干涉条纹,难以确定条纹移动距离, 样品 射镜 图4干涉显微镜光路图 图5干涉条纹移动 .26 式中M为蒸发材料的摩尔质量,Pv为蒸发材料的饱和蒸气压,T为蒸发材料温度.材料的饱 和蒸气压随温度的上升而迅速增大,温度变化 10%,饱和蒸气压就要变化约一个数量级.由 此可见,蒸发源温度的微小变化可引起蒸发速率的很大变化.因此,在蒸发镀膜过程中, 要想控制蒸发速率,必须精确控制蒸发源的温度. 蒸发镀膜最常用的加热方法是电阻大电流加热.采用钨、钼、钽、铂等高熔点化学性 能稳定的金属,做成适当形状的加热源,其上装入待蒸发材料,让电流通过,对蒸发材料 进行直接加热蒸发,或者把待蒸发材料放入氧化铝、氮化硼或石墨等坩埚中进行间接加热 蒸发.例如蒸镀铝膜,铝的熔点为 659 ℃,到 1100 ℃时开始迅速蒸发,常选用钨丝作为 加热源,钨的熔化温度为 3380 ℃. 在真空镀膜中,飞抵基片的气化原子或分子,除一部分被反射外,其于的被吸附在基 片的表面上.被吸附的原子或分子在基片表面上进行扩散运动,一部分在运动中因相互碰 撞而结聚成团,另一部分经过一段时间的滞留后,被蒸发而离开基片表面.聚团可能会与 表面扩散原子或分子发生碰撞时捕获原子或分子而增大,也可能因单个原子或分子脱离而 变小.当聚团增大到一定程度时,便会形成稳定的核,核再捕获到飞抵的原子或分子,或 在基片表面进行扩散运动的原子或分子就会生长.在生长过程中核与核合成而形成网络结 构,网络被填实即生成连续的薄膜.显然,基片的表面条件(例如清洁度和不完整性)、基 片的温度以及薄膜的沉积速率都将影响薄膜的质量. 5.干涉法测量膜厚 干涉法测量膜厚的理论基础是光的干涉效应.对于 3~2000 nm 的膜厚,一般可采用干 涉显微镜来测量.干涉显微镜可视为迈克尔逊干涉仪和显微镜的组合,其简化光路如图 4 所示.由光源发出的一束光经聚光镜和分光镜后分成强度相同的 B、C 两束光,分别经反 射镜和样品反射后汇合发生干涉.两条光路光程基本相等,当它们间有一夹角时,就可能 产生明暗相间的干涉条纹(等厚干涉).将薄膜制成台阶状,则光束 C 中从薄膜反射和从 基片表面反射的光程不同,它们和光束 B 干涉时,由于光程差而造成同一级次的干涉条纹 平移,如图 5 所示.由此可求出台阶高度(即薄膜厚度)为 2 λΔ ⋅= l l d (4) 式中 Δl 为同一级次干涉条纹(要认准)的移动距离,l 为明暗条纹间距,它们由测微目镜 测出,λ 为单色光源的波长.由于单色光形成的是亮暗干涉条纹,难以确定条纹移动距离, - 26 - 图 4 干涉显微镜光路图 图 5 干涉条纹移动