正在加载图片...
REVIEW RESEARCH 24.Simwami.S.P.et al.Low diversity Cryptococcus neoformans variety grubii 58.Milgroom.M.G..Wang.K.R.Zhou,Y..Lipari.S.E&Kaneko,S.Intercontinental multilocus sequence types from Thailand are consistent with an ancestral African population structure of the chestnut blight fungus,Cryphonectria parasitica origin.PLoS Pathog.7,e1001343(2011). Mycologia88.179-190(1996). 25.Holdich,D.M.Reynolds,.D.Souty-Grosset,C.&Sibley.P.J.A review of the ever 59.Gonthier,P.,Warner,R.Nicolotti,G.,Mazzaglia,A.Garbelotto,M.M.Pathoger increasing threat to European crayfish from non-indigenous crayfish species. introduction,as a collateral effect of military activity.Mycol.Res.108,468-470 Knowl.Managt Aquat.Ecosyst.394-395,11 (2009). 2004) 26.Andrew,T.G.Huchzermeyer,K.D.A,Mbeha,B.C.&Nengu,S.M.Epizootic 60.Goka,K.et al.Amphibian chytridiomycosis in Japan:distribution,haplotypes and ulcerative syndrome affecting fish in the Zambezi river system in southern Africa. possible route of entry into Japan.Mol Ecol.18,4757-4774(2009) Vet Rec.163.629-631(2008). 61.Garner,T.W.J.et al.The emerging amphibian pathogen Batrachochytrium 27.Rizzo.D.M.Garbelotto.M.Sudden oak death:endangering California and Oregon forest ecosystems.Front.Ecol Environ 1,197-204(2003). 28.Wills,R.T.The ecological impact of Phytophthora cinnamomi in the Stirling Range 62 Cunningham,A.A.etal Emergence of amphibian chytridiomycosis in Britain.Vet. National Park,Western Australia.Aust J.Ecol.18,145-159(1993) Rec.157,386-387(2005). 29.Jaenike,J.An hypothesis to account for the maintenance of sex within populations. 63.Walker,S.F.et al.Invasive pathogens threaten species recovery programs.Curr. Evol.Theor..3,191-1941978). Biol.18,R853-R854(2008) 30.Paterson,S.etal.Antagonistic coevolution accelerates molecular evolution.Nature 64.Farrer,R.A et al Multiple emergences of genetically diverse amphibian-infecting 464.275-278(2010). chytrids include a globalised hypervirulent recombinant lineage.Proc.Natl Acad. 31.McCallum.H.Dobson,A.Detecting disease and parasite threats to endangered Sci.US4108.18732-18736(2011). species and ecosystems.Trends Ecol.Evol.10,190-194(1995). 32. Population genomics analysis of the generation,and spread,of a hypervirulent De Castro,F.Bolker,B.Mechanisms of disease-induced extinction.Ecol.Lett 8, fungal lineage in amphibians worldwide. 117-126(2005). Theoretical study outlining the conditions under which disease can cause 65 Wibbelt,G.et al.White-nose syndrome Fungus(Geomyces destructans)in Bats, Europe.Emerg.Infect Dis.16,1237-1243(2010). extinction of its host species. 66. Richards,T.A.et al.Horizontal gene transfer facilitated the evolution of plant 33. Altizer,S.,Nunn,C.L.Lindenfors,P.Dothreatened hosts have fewer parasites?A parasitic mechanisms in the oomycetes.Proc.Natl Acad.Sci.USA 108, comparative study in primates.J.Anim.Ecol.76,304-314 (2007) 15258-15263(2011) 34.Daszak,P.Cunningham,A.A&Hyatt,A.D.Emerging infectious diseases of 67.Fraser,J.A et al.Same-sex mating and the origin of the Vancouver Island wildlife-threats to biodiversity and human health.Science 287,443-449 Cryptococcus gatti outbreak.Nature 437,1360-1364(2005) 2000】 Analysis of the evolution of a hypervirulent lineage of human-infecting fungus 35.Jones,K.E.etal Global trends in emerging infectious diseases.Nature451, that invaded British Columbia. 990-993(2008). 68.Turner,E,Jacobson,D.J.Taylor,J.W.Genetic architecture of a reinforced, Macroecological analysis of recent patterns of EIDs worldwide in humans. postmating,reproductive isolation barrier between Neurospora species indicates 36.Casadevall,A.Pirofski,L A.The damage response framework of microbial pathogenesis.Nature Rev.Microbiol.1,17-24(2003) evolution via natural selection.PLoS Genet.7,e1002204(2011). 37.de Roode,J.C.etal.Virulence and competitive ability in genetically diverse malaria 6 Coyne,J.A.Orr,H.A.Speciation (Sinauer Associates,2004). 70.Mallet,J.Hybrid speciation.Nature 446,279-283(2007). infections.Proc.Natl Acad.Sci.USA 102,7624-7628(2005) 71. 38.Nowak,M.A.May,R.M.Superinfection and the evolution of parasite virulence. Brasier,C.M.Rose,J.Gibbs,J.N.An unusual phytophthora associated with Proc.R.Soc.Lond.B 255.81-89 (1994). widespread alder mortality in Britain.Plant Pathol 44,999-1007(1995). 39.Briggs,C.J.,Knapp,R.A.Vredenburg.V.T.Enzootic and epizootic dynamics of Inderbitzin,P.,Davis,R.M.Bostock,R.M.Subbarao,K.V.The ascomycete the chytrid fungal pathogen of amphibians.Proc.Natl Acad.Sci.USA 107. Verticillium longisporum is a hybrid and a plant pathogen with an expanded host 9695-9700(2010) range.PLoS One 6,e18260(2011) 73. 40.Stephens,P.A.Sutherland,W.J.Freckleton,R.P.What is the Allee effect?Oikos Gange,A.C.Gange,E.G.Sparks,T.H.Boddy,L Rapid and recent changes in 87,185-190(1999) fungal fruiting patterns.Science 316,71(2007). 74. 41.Mitchell,K.M.Churcher,T.S.Garner,T.W.G.Fisher,M.C.Persistence of the Pachauri,R.K Resinger,A.(eds)Climate change 2007:Synthesis report emerging pathogen Batrachochytrium dendrobatidis outside the amphibian host (Intergovernmental Panel on Climate Change,2007). greatly increases the probability of host extinction.Proc.R.Soc.B 275,329-334 75. Newton,A.C.Johnson,S.N.Gregory,P.J.Implications of climate change for diseases.crop yields and food security.Euphytica 179,3-18(2011) (2008). 42.Rypien,K.L.Andras,J.P.Harvell,C.D.Globally panmicticpopulation structure in This paper highlights the importance of understanding the impact of climate the opportunistic fungal pathogen Aspergillus sydowii.Mol.Ecol.17,4068-4078 change on crops and disease. (2008). 76. Lake,J.A.Wade,R.N.Plant-pathogen interactions and elevated CO2: 43.Jessup,D.A.e.t a.I.Southern sea otter as a sentinel of marine ecosystem health morphological changes in favour of pathogens.J.Exp.Bot.60,3123-3131(2009) EcoHealth1,239-245(2004) 77. Chakraborty,S.et al Impacts of global change on diseases of agricultural crops 44.Sarmiento-Ramirez,J.M.et al.Fusarium solani is responsible for mass mortalities and forest trees.CAB Rev.3,1-5(2008). in nests of loggerhead sea turtle,Caretta caretta,in Boavista,Cape Verde.FEMS 78. Kobayashi,T.et al.Effects of elevated atmospheric CO2 concentration on the Microbiol Lett 312,192-200 (2010). infection of rice blast and sheath blight.Phytopathology 96,425-431(2006). 45.Lindner,D.L et al.DNA-based detection of the fungal pathogen Geomyces 79. Madgwick,J.W.et al.Impacts of climate change on wheat anthesis and fusarium destructans in soils from bat hibernacula.Mycologia 103,241-246(2011). ear blight in the UK Eur.J.Plant Pathol.130,117-131 (2011). 46.Holt R.D.Dobson,A.P.,Begon,M.Bowers,R.G.&Schauber,E.M.Parasite 80. Gregory.P.J Johnson,S.N..Newton,A.C.&Ingram,J.S.I.Integrating pests and establishment in host communities.Ecol.Lett 6,837-842(2003). pathogens into the climate change/food security debate.J.Exp.Bot 60, 47.Hansen.E.M.Parke,J.L&Sutton,W.Susceptibility of Oregon forest trees and 2827-2838(2009) shrubs to Phytophthora ramorum:a comparison of artificial inoculation and natural 81 Pounds,J.A.et al.Widespread amphibian extinctions from epidemic disease infection.Plant Dis.89.63-70(2005). driven by global warming.Nature 439,161-167(2006) 48.Frohlich-Nowoisky,Pickersgill,D.A,Despres,V.R.&Poschl,U.High diversity of 82 Bosch,J.,Carrascal,L M.Duran,L.,Walker,S.Fisher,M.C.Climate change and fungi in air particulate matter.Proc.Natl Acad.Sci.USA 106,12814-12819(2009) outbreaks of amphibian chytridiomycosis in a montane area of Central Spain;is Henk,D.A etal.Speciation despite globally overlapping distributions in Penicillium there a link?Proc.R Soc.B 274,253-260(2007). chrysogenum:the population genetics of Alexander Fleming's lucky fungus.Mol. 83 Rohr,J.R.Raffel,T.R.Romansic,J.M.,McCallum,H.&Hudson,P.J.Evaluating the Ec0l20.4288-4301(2011). links between climate,disease spread,and amphibian declines.Proc.Nat/Acad. 50. Pringle,A.Baker,D.M.,Platt,J.L,Latge,J.P.&Taylor,J.W.Cryptic speciation in the Sci.US4105,17436-174412008). cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. 84 Garner,T.W.J.Rowcliffe,J.M.Fisher,M.C.Climate change,chytridiomycosis or Evolution59,1886-1899(2005). condition:an experimental test of amphibian survival.Glob.Change Biol 17. 51. Ellison,C.E et al.Population genomics and local adaptation in wild isolates of a 667-675(2011) mode microbial eukaryote.Proc.NatlAcad.Sci USA108,2831-2836(2011) 85.Becker.C.G.Zamudio.K.R.Tropical amphibian populations experience higher 52.Giraud,T.,Gladieux,P.Gavrilets,S.Linking the emergence of fungal plant disease risk in natural habitats.Proc.Nat/Acad.Sci.USA 108,9893-9898(2011) diseases with ecological speciation.Trends Ecol Evol.25,387-395(2010) 86.Harvell,C.D.et al.Review:Emerging marine diseases-Climate links and 53. Springer,D.J.Chaturvedi,V.Projecting global occurrence of Cryptococcus gattii. anthropogenic factors.Science 285,1505-1510(1999). Emerg.Infect.Dis.16,14-20 (2010) 87.vanEngelsdorp,D.et al.Colony collapse disorder:a descriptive study.PLoS One 4, 54.Seimon,T.A.et al.Upward range extension of Andean anurans and e6481(2009). chytridiomycosis to extreme elevations in response to tropical deglaciation.Glob. 88.Ratnieks,F.L.W.Carreck,N.L.Clarity on honey bee collapse?Science 327 Change Biol.13,288-299(2007). 152-153(2010). 55.Fisher,M.C.et al Biogeographic range expansion into South America by 89.Verweij,P.E.Mellado.E.Melchers,W.J.G.Multiple-triazole-resistant Coccidioides immitis mirrors New World patterns of human migration.Proc.Natl spergillosis.N.Engl.J.Med.356,1481-1483(2007). Acad.Sci.US498.4558-4562(2001). 90.Klaassen,C.H.W.Gibbons,J.G.,Fedorova,N.D.,Meis,J.F.Rokas,A.Evidence for 56.Stukenbrock,E.H.McDonald,B.A The origins of plant pathogens in agro- genetic differentiation and variable recombination rates among Dutch ecosystems.Annu.Rev.Phytopathol.46,75-100 (2008). populations of the opportunistic human pathogen Aspergillus fumigatus.Mol.Ecol. 57.Brasier,C.M.The biosecurity threat to the UK and global environment from 2157-702012八 international trade in plants.Plant Pathol.57,792-808(2008). 91.Miraglia,M.et al.Climate change and food safety:an emerging issue with special An analysis of the lack of biosecurity and of the risk of disease introduction focus on Europe.Food Chem.Toxicol.47,1009-1021 (2009). associated with the international plant trade. 92.Stokstad,E.The famine fighter's last battle.Science 324,710-712(2009) 12 APRIL 2012 VOL 484 NATURE 193 2012 Macmillan Publishers Limited.All rights reserved24. Simwami, S. P. et al. Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin. PLoS Pathog. 7, e1001343 (2011). 25. Holdich, D. M., Reynolds, J. D., Souty-Grosset, C. & Sibley, P. J. A review of the ever increasing threat to European crayfish from non-indigenous crayfish species. Knowl. Managt. Aquat. Ecosyst. 394–395, 11 (2009). 26. Andrew, T. G., Huchzermeyer, K. D. A., Mbeha, B. C. & Nengu, S. M. Epizootic ulcerative syndrome affecting fish in the Zambezi river system in southern Africa. Vet. Rec. 163, 629–631 (2008). 27. Rizzo, D. M. & Garbelotto, M. Sudden oak death: endangering California and Oregon forest ecosystems. Front. Ecol. Environ. 1, 197–204 (2003). 28. Wills, R. T. The ecological impact of Phytophthora cinnamomi in the Stirling Range National Park, Western Australia. Aust. J. Ecol. 18, 145–159 (1993). 29. Jaenike, J. An hypothesis to account for themaintenance of sex within populations. Evol. Theor. 3, 191–194 (1978). 30. Paterson, S. et al. Antagonistic coevolution accelerates molecular evolution. Nature 464, 275–278 (2010). 31. McCallum, H. & Dobson, A. Detecting disease and parasite threats to endangered species and ecosystems. Trends Ecol. Evol. 10, 190–194 (1995). 32. De Castro, F. & Bolker, B. Mechanisms of disease-induced extinction. Ecol. Lett. 8, 117–126 (2005). Theoretical study outlining the conditions under which disease can cause extinction of its host species. 33. Altizer, S., Nunn, C. L. & Lindenfors, P. Do threatened hosts have fewer parasites? A comparative study in primates. J. Anim. Ecol. 76, 304–314 (2007). 34. Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife—threats to biodiversity and human health. Science 287, 443–449 (2000). 35. Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008). Macroecological analysis of recent patterns of EIDs worldwide in humans. 36. Casadevall, A. & Pirofski, L. A. The damage response framework of microbial pathogenesis. Nature Rev. Microbiol. 1, 17–24 (2003). 37. de Roode, J. C. et al. Virulence and competitive ability in genetically diverse malaria infections. Proc. Natl Acad. Sci. USA 102, 7624–7628 (2005). 38. Nowak, M. A. & May, R. M. Superinfection and the evolution of parasite virulence. Proc. R. Soc. Lond. B 255, 81–89 (1994). 39. Briggs, C. J., Knapp, R. A. & Vredenburg, V. T. Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc. Natl Acad. Sci. USA 107, 9695–9700 (2010). 40. Stephens, P. A., Sutherland, W. J. & Freckleton, R. P. What is the Allee effect? Oikos 87, 185–190 (1999). 41. Mitchell, K. M., Churcher, T. S., Garner, T. W. G. & Fisher, M. C. Persistence of the emerging pathogen Batrachochytrium dendrobatidis outside the amphibian host greatly increases the probability of host extinction. Proc. R. Soc. B 275, 329–334 (2008). 42. Rypien, K. L., Andras, J. P. & Harvell, C. D. Globally panmictic population structure in the opportunistic fungal pathogen Aspergillus sydowii. Mol. Ecol. 17, 4068–4078 (2008). 43. Jessup, D. A. e. t. a. l. Southern sea otter as a sentinel of marine ecosystem health. EcoHealth 1, 239–245 (2004). 44. Sarmiento-Ramı´rez, J. M. et al. Fusarium solani is responsible for mass mortalities in nests of loggerhead sea turtle, Caretta caretta, in Boavista, Cape Verde. FEMS Microbiol. Lett. 312, 192–200 (2010). 45. Lindner, D. L. et al. DNA-based detection of the fungal pathogen Geomyces destructans in soils from bat hibernacula. Mycologia 103, 241–246 (2011). 46. Holt, R. D., Dobson, A. P., Begon, M., Bowers, R. G. & Schauber, E. M. Parasite establishment in host communities. Ecol. Lett. 6, 837–842 (2003). 47. Hansen, E. M., Parke, J. L. & Sutton, W. Susceptibility of Oregon forest trees and shrubs to Phytophthora ramorum: a comparison of artificial inoculation and natural infection. Plant Dis. 89, 63–70 (2005). 48. Fro¨hlich-Nowoisky, J., Pickersgill, D. A., Despres, V. R. & Poschl, U. High diversity of fungi in air particulatematter.Proc. Natl Acad. Sci. USA106,12814–12819 (2009). 49. Henk, D. A. et al.Speciation despite globally overlapping distributions inPenicillium chrysogenum: the population genetics of Alexander Fleming’s lucky fungus. Mol. Ecol. 20, 4288–4301 (2011). 50. Pringle, A., Baker, D.M., Platt, J. L., Latge, J. P. & Taylor, J. W. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution 59, 1886–1899 (2005). 51. Ellison, C. E. et al. Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proc. Natl Acad. Sci. USA 108, 2831–2836 (2011). 52. Giraud, T., Gladieux, P. & Gavrilets, S. Linking the emergence of fungal plant diseases with ecological speciation. Trends Ecol. Evol. 25, 387–395 (2010). 53. Springer, D. J. & Chaturvedi, V. Projecting global occurrence of Cryptococcus gattii. Emerg. Infect. Dis. 16, 14–20 (2010). 54. Seimon, T. A. et al. Upward range extension of Andean anurans and chytridiomycosis to extreme elevations in response to tropical deglaciation. Glob. Change Biol. 13, 288–299 (2007). 55. Fisher, M. C. et al. Biogeographic range expansion into South America by Coccidioides immitis mirrors New World patterns of human migration. Proc. Natl Acad. Sci. USA 98, 4558–4562 (2001). 56. Stukenbrock, E. H. & McDonald, B. A. The origins of plant pathogens in agro￾ecosystems. Annu. Rev. Phytopathol. 46, 75–100 (2008). 57. Brasier, C. M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 57, 792–808 (2008). An analysis of the lack of biosecurity and of the risk of disease introduction associated with the international plant trade. 58. Milgroom, M. G., Wang, K. R., Zhou, Y., Lipari, S. E. & Kaneko, S. Intercontinental population structure of the chestnut blight fungus, Cryphonectria parasitica. Mycologia 88, 179–190 (1996). 59. Gonthier, P., Warner, R., Nicolotti, G., Mazzaglia, A. & Garbelotto, M. M. Pathogen introduction, as a collateral effect of military activity. Mycol. Res. 108, 468–470 (2004). 60. Goka, K. et al. Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Mol. Ecol. 18, 4757–4774 (2009). 61. Garner, T. W. J. et al. The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biol. Lett. 2, 455–459 (2006). 62. Cunningham, A. A. et al. Emergence of amphibian chytridiomycosis in Britain. Vet. Rec. 157, 386–387 (2005). 63. Walker, S. F. et al. Invasive pathogens threaten species recovery programs. Curr. Biol. 18, R853–R854 (2008). 64. Farrer, R. A. et al. Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalised hypervirulent recombinant lineage. Proc. Natl Acad. Sci. USA 108, 18732–18736 (2011). Population genomics analysis of the generation, and spread, of a hypervirulent fungal lineage in amphibians worldwide. 65. Wibbelt, G. et al. White-nose syndrome Fungus (Geomyces destructans) in Bats, Europe. Emerg. Infect. Dis. 16, 1237–1243 (2010). 66. Richards, T. A. et al. Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc. Natl Acad. Sci. USA 108, 15258–15263 (2011). 67. Fraser, J. A. et al. Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437, 1360–1364 (2005). Analysis of the evolution of a hypervirulent lineage of human-infecting fungus that invaded British Columbia. 68. Turner, E., Jacobson, D. J. & Taylor, J. W. Genetic architecture of a reinforced, postmating, reproductive isolation barrier between Neurospora species indicates evolution via natural selection. PLoS Genet. 7, e1002204 (2011). 69. Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004). 70. Mallet, J. Hybrid speciation. Nature 446, 279–283 (2007). 71. Brasier, C. M., Rose, J. & Gibbs, J. N. An unusual phytophthora associated with widespread alder mortality in Britain. Plant Pathol. 44, 999–1007 (1995). 72. Inderbitzin, P., Davis, R. M., Bostock, R. M. & Subbarao, K. V. The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLoS One 6, e18260 (2011). 73. Gange, A. C., Gange, E. G., Sparks, T. H. & Boddy, L. Rapid and recent changes in fungal fruiting patterns. Science 316, 71 (2007). 74. Pachauri, R. K. & Resinger, A. (eds) Climate change 2007: Synthesis report. (Intergovernmental Panel on Climate Change, 2007). 75. Newton, A. C., Johnson, S. N. & Gregory, P. J. Implications of climate change for diseases, crop yields and food security. Euphytica 179, 3–18 (2011). This paper highlights the importance of understanding the impact of climate change on crops and disease. 76. Lake, J. A. & Wade, R. N. Plant–pathogen interactions and elevated CO2: morphological changes in favour of pathogens. J. Exp. Bot. 60, 3123–3131 (2009). 77. Chakraborty, S. et al. Impacts of global change on diseases of agricultural crops and forest trees. CAB Rev. 3, 1–5 (2008). 78. Kobayashi, T. et al. Effects of elevated atmospheric CO2 concentration on the infection of rice blast and sheath blight. Phytopathology 96, 425–431 (2006). 79. Madgwick, J. W. et al. Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. Eur. J. Plant Pathol. 130, 117–131 (2011). 80. Gregory, P. J., Johnson, S. N., Newton, A. C. & Ingram, J. S. I. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 60, 2827–2838 (2009). 81. Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006). 82. Bosch, J., Carrascal, L. M., Duran, L., Walker, S. & Fisher, M. C. Climate change and outbreaks of amphibian chytridiomycosis in a montane area of Central Spain; is there a link? Proc. R. Soc. B 274, 253–260 (2007). 83. Rohr, J. R., Raffel, T. R., Romansic, J. M., McCallum, H. & Hudson, P. J. Evaluating the links between climate, disease spread, and amphibian declines. Proc. Natl Acad. Sci. USA 105, 17436–17441 (2008). 84. Garner, T. W. J., Rowcliffe, J. M. & Fisher, M. C. Climate change, chytridiomycosis or condition: an experimental test of amphibian survival. Glob. Change Biol. 17, 667–675 (2011). 85. Becker, C. G. & Zamudio, K. R. Tropical amphibian populations experience higher disease risk in natural habitats. Proc. Natl Acad. Sci. USA 108, 9893–9898 (2011). 86. Harvell, C. D. et al. Review: Emerging marine diseases - Climate links and anthropogenic factors. Science 285, 1505–1510 (1999). 87. vanEngelsdorp, D. et al. Colony collapse disorder: a descriptive study. PLoS One 4, e6481 (2009). 88. Ratnieks, F. L. W. & Carreck, N. L. Clarity on honey bee collapse? Science 327, 152–153 (2010). 89. Verweij, P. E., Mellado, E. & Melchers, W. J. G. Multiple-triazole-resistant aspergillosis. N. Engl. J. Med. 356, 1481–1483 (2007). 90. Klaassen, C. H. W., Gibbons, J. G., Fedorova, N. D., Meis, J. F. & Rokas, A. Evidence for genetic differentiation and variable recombination rates among Dutch populations of the opportunistic human pathogen Aspergillus fumigatus. Mol. Ecol. 21, 57–70 (2012). 91. Miraglia, M. et al. Climate change and food safety: an emerging issue with special focus on Europe. Food Chem. Toxicol. 47, 1009–1021 (2009). 92. Stokstad, E. The famine fighter’s last battle. Science 324, 710–712 (2009). REVIEW RESEARCH 12 APR IL 2012 | VOL 484 | NATURE | 193 ©2012 Macmillan Publishers Limited. All rights reserved
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有