张玉林等:镁锂合金表面含碳陶瓷层的摩擦性能 ·611· Mg Ka 元素 质量原子数 O Ka Mg Ka 元素 质量原子数 分数%百分数/% 分数%百分数% 2 Mg 32.8 30.8 Mg 19.3 15.1 0 42.0 59.1 ) 48.8 57.1 0 0 C 14.0 21.8 Fe 25.2 10.1 Fe 17.9 6.0 2 3 4 6 3 4 能量keV 能量keV 图8微弧氧化陶瓷层磨痕处元素含量分析.(a)A点:(b)B点 Fig.8 Elemental analysis of MAO coating wear scratches:(a)point A:(b)point B 显微硬度起到明显促进作用. [8]Lii G H,Chen H,Gu W C,et al.Effects of graphite additives in (3)含碳陶瓷层的摩擦实验研究表明,由于陶 electrolytes on the microstructure and corrosion resistance of alumi- 瓷层表面包覆石墨烯,在摩擦过程中,起到良好的减 na PEO coatings.Curr Appl Phys,2009,9(2)324 [9]Snizhko L 0,Yerokhin A L,Pilkington A,et al.Anodic proces- 摩效果:此外,陶瓷层表面硬度的提高,对其耐磨性 ses in plasma electrolytic oxidation of aluminium in alkaline solu- 也有着明显的改善作用. tions.Electrochim Acta,2004,49(13):2085 [10]Dunleavy CS,Golosnoy I O,Curran J A,et al.Characterisation 参考文献 of discharge events during plasma electrolytic oxidation.Surf Coat [1]Jia M Y,Zhang Y L.Wang C Y,et al.A study of micro-arc oxi- Technol,2009,203(22):3410 dation process for Mg-Li alloy.Electroplat Poll Contrl,2013,33 [11]Feng C J,Hu S L,Jiang Y F,et al.Effects of micro-arc oxida- (6):25 tion of Ti6Al4V alloy on adhesion property to electroless Ni-P- (贾鸣燕,张亚伦,王成远,等.镁-锂合金微弧氧化工艺的研 Zr composite platings and their wear resistance.Rare Met Ma- 究.电镀与环保,2013,33(6):25) ter Eng,2013,42(12):2427 [2]Laleh M,Rouhaghdam A S,Shahrabi T,et al.Effect of alumina [12]Abbasi S,Golestani-Fard F,Rezaie H R,et al.MAO-derived sol addition to micro-are oxidation electrolyte on the properties of hydroxyapatite/TiO nanostructured multi-layer coatings on titani- MAO coatings formed on magnesium alloy AZ91D.J Alloys um substrate.Appl Surf Sci,2012,261:37 Compd,2010,496(1-2):548 [13]Ma K J,Bosta M MS A,Wu W T.Preparation of self-lubrica- [3]Zhou WQ,Shan D Y,Han E H,et al.Studies on corrosion re- ting composite coatings through a micro-are plasma oxidation with sistance of a non-chromate conversion coating for magnesium al- graphite in electrolyte solution.Surf Coat Technol,2014,259:318 loys.Mater Prot,2002,35(2)12 [14]Mohammadi S,Taromi F A,Shariatpanahi H,et al.Electro- (周婉秋,单大勇,韩恩厚,等.镁合金无铬化学转化膜的耐 chemical and anticorrosion behavior of functionalized graphite 蚀性研究.材料保护,2002,35(2):12) nanoplatelets epoxy coating.J Ind Eng Chem,2014,20(6): [4]Matykina E,Arrabal R,Monfort F,et al.Incorporation of zirconia 4124 into coatings formed by DC plasma electrolytic oxidation of alumin- [15]Hua Y,Zhang ZG.Li W.Microstructure and degradation prop- ium in nanoparticle suspensions.Appl Suf Sci,2008.255(5): erties of C-containing composite coatings on magnesium alloy 2830 wires treated with micro-arc oxidation.Surf Coat Technol,2016. [5] Chen F,Zhou H,Yao B,et al.Corrosion resistance property of 291:70 the ceramic coating obtained through microarc oxidation on the [16]Wu X H.Su P B.Jiang Z H,et al.Influences of current density A731 magnesium alloy surfaces.Surf Coat Technol,2007,201(9. on tribological characteristics of ceramic coatings on ZK60 Mg al- 11):4905 loy by plasma electrolytic oxidation.ACS Appl Mater Interfaces [6]Yang Y,Liu Y H.Effects of current density on the microstructure 2010.2(3):808 and the comsion resistance of alumina coatings embedded with Sic [17]Tsao L C.Interfacial structure and fracture behavior of 6061 Al nano-particles produced by micro-arc oxidation.J Mater Sci Techn and MAO-6061 Al direct active soldered with Sn-Ag-Ti active o,2010,26(11):1016 solder.Mater Des,2014,56:318 [7]Li X J,Luan B L.Discovery of Al2O3 particles incorporation [18]Li H X.Song R G.Ji Z G.Effects of nano-additive TiOz on per- mechanism in plasma electrolytic oxidation of AM60B magnesium formance of micro-are oxidation coatings formed on 6063 alumi- alloy.Mater Lett,2012,86:88 num alloy.Trans Nonferrous Met Soe China,2013,23(2):406张玉林等: 镁锂合金表面含碳陶瓷层的摩擦性能 图 8 微弧氧化陶瓷层磨痕处元素含量分析 郾 (a) A 点; (b) B 点 Fig. 8 Elemental analysis of MAO coating wear scratches: (a) point A; (b) point B 显微硬度起到明显促进作用. (3)含碳陶瓷层的摩擦实验研究表明,由于陶 瓷层表面包覆石墨烯,在摩擦过程中,起到良好的减 摩效果;此外,陶瓷层表面硬度的提高,对其耐磨性 也有着明显的改善作用. 参 考 文 献 [1] Jia M Y, Zhang Y L, Wang C Y, et al. A study of micro鄄arc oxi鄄 dation process for Mg鄄鄄Li alloy. Electroplat Poll Contrl, 2013, 33 (6): 25 (贾鸣燕, 张亚伦, 王成远, 等. 镁鄄鄄锂合金微弧氧化工艺的研 究. 电镀与环保, 2013, 33(6): 25) [2] Laleh M, Rouhaghdam A S, Shahrabi T, et al. Effect of alumina sol addition to micro鄄arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D. J Alloys Compd, 2010, 496(1鄄2): 548 [3] Zhou W Q, Shan D Y, Han E H, et al. Studies on corrosion re鄄 sistance of a non鄄chromate conversion coating for magnesium al鄄 loys. Mater Prot, 2002, 35(2): 12 (周婉秋, 单大勇, 韩恩厚, 等. 镁合金无铬化学转化膜的耐 蚀性研究. 材料保护, 2002, 35(2): 12) [4] Matykina E, Arrabal R, Monfort F, et al. Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of alumin鄄 ium in nanoparticle suspensions. Appl Surf Sci, 2008, 255 (5 ): 2830 [5] Chen F, Zhou H, Yao B, et al. Corrosion resistance property of the ceramic coating obtained through microarc oxidation on the AZ31 magnesium alloy surfaces. Surf Coat Technol, 2007, 201(9鄄 11): 4905 [6] Yang Y, Liu Y H. Effects of current density on the microstructure and the corrosion resistance of alumina coatings embedded with SiC nano鄄particles produced by micro鄄arc oxidation. J Mater Sci Techn鄄 ol, 2010, 26(11): 1016 [7] Li X J, Luan B L. Discovery of Al2O3 particles incorporation mechanism in plasma electrolytic oxidation of AM60B magnesium alloy. Mater Lett, 2012, 86: 88 [8] L俟 G H, Chen H, Gu W C, et al. Effects of graphite additives in electrolytes on the microstructure and corrosion resistance of alumi鄄 na PEO coatings. Curr Appl Phys, 2009, 9(2): 324 [9] Snizhko L O, Yerokhin A L, Pilkington A, et al. Anodic proces鄄 ses in plasma electrolytic oxidation of aluminium in alkaline solu鄄 tions. Electrochim Acta, 2004, 49(13): 2085 [10] Dunleavy C S, Golosnoy I O, Curran J A, et al. Characterisation of discharge events during plasma electrolytic oxidation. Surf Coat Technol, 2009, 203(22): 3410 [11] Feng C J, Hu S L, Jiang Y F, et al. Effects of micro鄄arc oxida鄄 tion of Ti6Al4V alloy on adhesion property to electroless Ni鄄鄄 P鄄鄄 ZrO2 composite platings and their wear resistance. Rare Met Ma鄄 ter Eng, 2013, 42(12): 2427 [12] Abbasi S, Golestani鄄Fard F, Rezaie H R, et al. MAO鄄derived hydroxyapatite / TiO2 nanostructured multi鄄layer coatings on titani鄄 um substrate. Appl Surf Sci, 2012, 261: 37 [13] Ma K J, Bosta M M S A, Wu W T. Preparation of self鄄lubrica鄄 ting composite coatings through a micro鄄arc plasma oxidation with graphite in electrolyte solution. Surf Coat Technol, 2014, 259: 318 [14] Mohammadi S, Taromi F A, Shariatpanahi H, et al. Electro鄄 chemical and anticorrosion behavior of functionalized graphite nanoplatelets epoxy coating. J Ind Eng Chem, 2014, 20 ( 6 ): 4124 [15] Hua Y, Zhang Z G, Li W. Microstructure and degradation prop鄄 erties of C鄄containing composite coatings on magnesium alloy wires treated with micro鄄arc oxidation. Surf Coat Technol, 2016, 291: 70 [16] Wu X H, Su P B, Jiang Z H, et al. Influences of current density on tribological characteristics of ceramic coatings on ZK60 Mg al鄄 loy by plasma electrolytic oxidation. ACS Appl Mater Interfaces, 2010, 2(3): 808 [17] Tsao L C. Interfacial structure and fracture behavior of 6061 Al and MAO鄄鄄6061 Al direct active soldered with Sn鄄鄄 Ag鄄鄄 Ti active solder. Mater Des, 2014, 56: 318 [18] Li H X, Song R G, Ji Z G. Effects of nano鄄additive TiO2 on per鄄 formance of micro鄄arc oxidation coatings formed on 6063 alumi鄄 num alloy. Trans Nonferrous Met Soc China, 2013, 23(2): 406 ·611·