正在加载图片...
10.REFERENCES [14]H.Khalid,M.Nagappan,E.Shihab,and A.E.Hassan [1]E.Arisholm,L.C.Briand,and E.B.Johannessen.A Prioritizing the Devices to Test Your App on:A Case systematic and comprehensive investigation of methods Study of Android Game Apps.In Proceedings of the to build and evaluate fault prediction models.Journal 22Nd ACM SIGSOFT International Sumposium on of Systems and Software,83(1):2-17,Jan.2010. Foundations of Software Engineering,FSE 2014,pages [2]Y.Benjamini and Y.Hochberg.Controlling the False 610-620,New York,NY,USA.2014.ACM. Discovery Rate:A Practical and Powerful Approach to 15 S.Kim,E.Whitehead,and Y.Zhang.Classifying Multiple Testing.Journal of the Royal Statistical Software Changes:Clean or Buggy?IEEE Society.Series B (Methodological).57(1):289-300.Jan Transactions on Software Engineering,34(2):181-196. 1995. Mar.2008. [3]P.Bishnu and V.Bhattacherjee.Software Fault [16 A.Koru,D.Zhang,K.El Emam,and H.Liu.An Prediction Using Quad Tree-Based K-Means Clustering Investigation into the Functional Form of the Algorithm.IEEE Transactions on Knowledge and Data Size-Defect Relationship for Software Modules.IEEE Engineering,24(6):1146-1150,June 2012. Transactions on Software Engineering,35(2):293-304. [4]M.D'Ambros,M.Lanza,and R.Robbes.An extensive Mar.2009. comparison of bug prediction approaches.In 2010 7th [17]A.Koru,D.Zhang,and H.Liu.Modeling the Effect of IEEE Working Conference on Mining Software Size on Defect Proneness for Open-Source Software. Repositories (MSR),pages 31-41,May 2010. pages115-124,May2007. (5]J.Ekanayake,J.Tappolet,H.C.Gall,and 18A.G.Koru,K.E.Emam,D.Zhang,H.Liu,and A.Bernstein.Time variance and defect prediction in D.Mathew.Theory of relative defect proneness. software projects.Empirical Software Engineering, Empirical Software Engineering,13(5):473-498,Oct 17(4-5):348-389.Nov.2011. 2008. [6]J.Eyolfson,L.Tan,and P.Lam.Do Time of Day and [19]G.Koru,H.Liu,D.Zhang,and K.E.Emam.Testing Developer Experience Affect Commit Bugginess?MSR the theory of relative defect proneness for closed-source '11,pages 153-162,New York,NY,USA,2011.ACM. software.Empirical Software Engineering, [7]T.Fukushima,Y.Kamei,S.McIntosh,K.Yamashita, 15(6):577-598,Dec.2010. and N.Ubayashi.An Empirical Study of Just-in-time 20 S.Lessmann,B.Baesens,C.Mues,and S.Pietsch. Defect Prediction Using Cross-project Models.In Benchmarking Classification Models for Software Proceedings of the 11th Working Conference on Mining Defect Prediction:A Proposed Framework and Novel Software Repositories,MSR 2014,pages 172-181,New Findings.IEEE Transactions on Software Engineering York,NY,USA,2014.ACM. 34(4):485-496,July2008. [8]B.Ghotra,S.McIntosh,and A.E.Hassan.Revisiting [21]C.Lewis,Z.Lin,C.Sadowski,X.Zhu,R.Ou,and E.J. the Impact of Classification Techniques on the Whitehead Jr.Does Bug Prediction Support Human Performance of Defect Prediction Models.In 2015 Developers?Findings from a Google Case Study.In IEEE/ACM 37th IEEE International Conference on Proceedings of the 2013 International Conference on Software Engineering (ICSE),volume 1,pages 789-800, Software Engineering,ICSE'13,pages 372-381 May2015. Piscataway,NJ,USA,2013.IEEE Press. [9]T.Graves,A.Karr,J.Marron,and H.Siy.Predicting [22]S.Matsumoto,Y.Kamei,A.Monden,K.-i.Matsumoto, fault incidence using software change history.IEEE and M.Nakamura.An analysis of developer metrics for Transactions on Software Engineering,26(7):653-661, fault prediction.In Proceedings of the 6th International July 2000. Conference on Predictive Models in Software [10]T.Hall,S.Beecham,D.Bowes,D.Gray,and Engineering,PROMISE '10,pages 18:1-18:9.New S.Counsell.A Systematic Literature Review on Fault York,NY,USA,2010.ACM. Prediction Performance in Software Engineering.IEEE 23 T.Mende and R.Koschke.Revisiting the Evaluation of Transactions on Software Engineering,38(6):1276-1304, Defect Prediction Models.In Proceedings of the 5th Nov.2012 International Conference on Predictor Models in [11]A.E.Hassan.Predicting Faults Using the Complexity Software Engineering,PROMISE'09,pages 7:1-7:10, of Code Changes.In Proceedings of the 31st New York,NY.USA.2009.ACM. International Conference on Software Engineering, 24 T.Mende and R.Koschke.Effort-aware defect ICSE '09,pages 78-88,Washington,DC,USA,2009. prediction models.In Proceedings of the 2010 14th IEEE Computer Society. European Conference on Software Maintenance and 12 Y.Kamei,S.Matsumoto,A.Monden,K.-i.Matsumoto, Reengineering,CSMR'10,pages 107-116,Washington, B.Adams,and A.E.Hassan.Revisiting Common Bug DC,USA,2010.IEEE Computer Society. Prediction Findings Using Effort-aware Models.In [25]T.Menzies,J.Greenwald,and A.Frank.Data Mining Proceedings of the 2010 IEEE International Conference Static Code Attributes to Learn Defect Predictors. on Software Maintenance,ICSM'10,pages 1-10, IEEE Transactions on Software Engineering, Washington,DC.USA,2010.IEEE Computer Society 33(1):2-13.Jan.2007. [13]Y.Kamei,E.Shihab,B.Adams,A.Hassan, 26 T.Menzies,Z.Milton,B.Turhan,B.Cukic,Y.Jiang. A.Mockus,A.Sinha.and N.Ubayashi.A large-scale and A.Bener.Defect prediction from static code empirical study of just-in-time quality assurance.IEEE features:current results,limitations,new approaches. Transactions on Software Engineering,39(6):757-773, Automated Software Engineering,17(4):375-407,May June 2013. 2010. 16710. REFERENCES [1] E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and comprehensive investigation of methods to build and evaluate fault prediction models. Journal of Systems and Software, 83(1):2–17, Jan. 2010. [2] Y. Benjamini and Y. Hochberg. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1):289–300, Jan. 1995. [3] P. Bishnu and V. Bhattacherjee. Software Fault Prediction Using Quad Tree-Based K-Means Clustering Algorithm. IEEE Transactions on Knowledge and Data Engineering, 24(6):1146–1150, June 2012. [4] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug prediction approaches. In 2010 7th IEEE Working Conference on Mining Software Repositories (MSR), pages 31–41, May 2010. [5] J. Ekanayake, J. Tappolet, H. C. Gall, and A. Bernstein. Time variance and defect prediction in software projects. Empirical Software Engineering, 17(4-5):348–389, Nov. 2011. [6] J. Eyolfson, L. Tan, and P. Lam. Do Time of Day and Developer Experience Affect Commit Bugginess? MSR ’11, pages 153–162, New York, NY, USA, 2011. ACM. [7] T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi. An Empirical Study of Just-in-time Defect Prediction Using Cross-project Models. In Proceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014, pages 172–181, New York, NY, USA, 2014. ACM. [8] B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the Impact of Classification Techniques on the Performance of Defect Prediction Models. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE), volume 1, pages 789–800, May 2015. [9] T. Graves, A. Karr, J. Marron, and H. Siy. Predicting fault incidence using software change history. IEEE Transactions on Software Engineering, 26(7):653–661, July 2000. [10] T. Hall, S. Beecham, D. Bowes, D. Gray, and S. Counsell. A Systematic Literature Review on Fault Prediction Performance in Software Engineering. IEEE Transactions on Software Engineering, 38(6):1276–1304, Nov. 2012. [11] A. E. Hassan. Predicting Faults Using the Complexity of Code Changes. In Proceedings of the 31st International Conference on Software Engineering, ICSE ’09, pages 78–88, Washington, DC, USA, 2009. IEEE Computer Society. [12] Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, and A. E. Hassan. Revisiting Common Bug Prediction Findings Using Effort-aware Models. In Proceedings of the 2010 IEEE International Conference on Software Maintenance, ICSM ’10, pages 1–10, Washington, DC, USA, 2010. IEEE Computer Society. [13] Y. Kamei, E. Shihab, B. Adams, A. Hassan, A. Mockus, A. Sinha, and N. Ubayashi. A large-scale empirical study of just-in-time quality assurance. IEEE Transactions on Software Engineering, 39(6):757–773, June 2013. [14] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan. Prioritizing the Devices to Test Your App on: A Case Study of Android Game Apps. In Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE 2014, pages 610–620, New York, NY, USA, 2014. ACM. [15] S. Kim, E. Whitehead, and Y. Zhang. Classifying Software Changes: Clean or Buggy? IEEE Transactions on Software Engineering, 34(2):181–196, Mar. 2008. [16] A. Koru, D. Zhang, K. El Emam, and H. Liu. An Investigation into the Functional Form of the Size-Defect Relationship for Software Modules. IEEE Transactions on Software Engineering, 35(2):293–304, Mar. 2009. [17] A. Koru, D. Zhang, and H. Liu. Modeling the Effect of Size on Defect Proneness for Open-Source Software. pages 115–124, May 2007. [18] A. G. Koru, K. E. Emam, D. Zhang, H. Liu, and D. Mathew. Theory of relative defect proneness. Empirical Software Engineering, 13(5):473–498, Oct. 2008. [19] G. Koru, H. Liu, D. Zhang, and K. E. Emam. Testing the theory of relative defect proneness for closed-source software. Empirical Software Engineering, 15(6):577–598, Dec. 2010. [20] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch. Benchmarking Classification Models for Software Defect Prediction: A Proposed Framework and Novel Findings. IEEE Transactions on Software Engineering, 34(4):485–496, July 2008. [21] C. Lewis, Z. Lin, C. Sadowski, X. Zhu, R. Ou, and E. J. Whitehead Jr. Does Bug Prediction Support Human Developers? Findings from a Google Case Study. In Proceedings of the 2013 International Conference on Software Engineering, ICSE ’13, pages 372–381, Piscataway, NJ, USA, 2013. IEEE Press. [22] S. Matsumoto, Y. Kamei, A. Monden, K.-i. Matsumoto, and M. Nakamura. An analysis of developer metrics for fault prediction. In Proceedings of the 6th International Conference on Predictive Models in Software Engineering, PROMISE ’10, pages 18:1–18:9, New York, NY, USA, 2010. ACM. [23] T. Mende and R. Koschke. Revisiting the Evaluation of Defect Prediction Models. In Proceedings of the 5th International Conference on Predictor Models in Software Engineering, PROMISE ’09, pages 7:1–7:10, New York, NY, USA, 2009. ACM. [24] T. Mende and R. Koschke. Effort-aware defect prediction models. In Proceedings of the 2010 14th European Conference on Software Maintenance and Reengineering, CSMR ’10, pages 107–116, Washington, DC, USA, 2010. IEEE Computer Society. [25] T. Menzies, J. Greenwald, and A. Frank. Data Mining Static Code Attributes to Learn Defect Predictors. IEEE Transactions on Software Engineering, 33(1):2–13, Jan. 2007. [26] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. Defect prediction from static code features: current results, limitations, new approaches. Automated Software Engineering, 17(4):375–407, May 2010. 167
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有