正在加载图片...
REVIEWS NATUREIVol 453112 June 2008 2007 ides a demonstration of the coupling between CMRO and the B.,War BOLD.blo c uniformity in structure of th 95-121020 60.Cragg.B.G.The ensityof the motor and visual areas o d9562 42 ent signal cs and the k tic design of excitatory MT A 19-206(2003 tructure Re 200 S.Thirty ye of a very special visual area,area V5.I Physiol 557,1-2 F.A An 5.M.TheM ota,A.To 68 E M D e375.39-161geeae 12295 sing of shape,color,and velocity in 677m-78 2481561dp 69 49. al control of CNS cacillary diameter by pericytes 00 70. etition.Nature Rev.Neurosci.3.13-2 cular tone.J.Appl 02 the reg uglas.R.Martin.K.AC.Whit 19 72.Bartels.A.Loppt etis.N.K 6 Mou tivity in area eralcorreld 779-7790200 Stimulus tuning 53 Sup egnsntlnirmationsinkedtotheontineversionofthepperat 55 gy of the BOLD IMRI signal in nse B.Web s support Max Planck Society. 66 iwettoc 878 08 Macmillan Publishers Limited.All rights reserved38. Ackermann, R. F., Finch, D. M., Babb, T. L. & Engel, J. Jr. Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J. Neurosci. 4, 251–264 (1984). 39. Stefanovic, B., Warnking, J. M. & Pike, G. B. Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22, 771–778 (2004). 40. Shmuel, A. et al. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36, 1195–1210 (2002). 41. Shmuel, A., Augath, M., Oeltermann, A. & Logothetis, N. K. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nature Neurosci. 9, 569–577 (2006). 42. Devor, A. et al. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J. Neurosci. 27, 4452–4459 (2007). 43. Attwell, D. & Gibb, A. Neuroenergetics and the kinetic design of excitatory synapses. Nature Rev. Neurosci. 6, 841–849 (2005). 44. Payne, J. A., Rivera, C., Voipio, J. & Kaila, K. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26, 199–206 (2003). 45. McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985). 46. Buzsaki, G., Geisler, C., Henze, D. A. & Wang, X. J. Interneuron diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27, 186–193 (2004). 47. Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z. & Markram, H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb. Cortex 12, 395–410 (2002). 48. Buzsaki, G., Kaila, K. & Raichle, M. Inhibition and brain work. Neuron 56, 771–783 (2007). 49. Peppiatt, C. M. et al. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006). 50. Hamel, E. Perivascular nerves and the regulation of cerebrovascular tone. J. Appl. Physiol. 100, 1059–1064 (2006). 51. Kayser, C. & Konig, P. Stimulus locking and feature selectivity prevail in complementary frequency ranges of V1 local field potentials. Eur. J. Neurosci. 19, 485–489 (2004). 52. Liu, J. & Newsome, W. T. Local field potential in cortical area MT: Stimulus tuning and behavioral correlations. J. Neurosci. 26, 7779–7790 (2006). 53. Wilke, M., Logothetis, N. K. & Leopold, D. A. Local field potential reflects perceptual suppression in monkey visual cortex. Proc. Natl Acad. Sci. USA 103, 17507–17512 (2006). 54. Logothetis, N. K. et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001). 55. Goense, J. B. M. & Logothetis, N. K. Neurophysiology of the BOLD fMRI signal in awake monkeys. Current Biol. 18, 631–640 (2008). 56. Mathiesen, C., Caesar, K., Akgoren, N. & Lauritzen, M. Modification of activity￾dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J. Physiol. 512, 555–566 (1998). 57. Viswanathan, A. & Freeman, R. D. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nature Neurosci. 10, 1308–1312 (2007). This paper provides a demonstration of the coupling between CMRO2 and the LFP. 58. Rauch, A., Rainer, G. & Logothetis, N. K. The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc. Natl Acad. Sci. USA 105, 6759–6764 (2008). 59. Rockel, A. J., Hiorns, R. W. & Powell, T. P. The basic uniformity in structure of the neocortex. Brain 103, 221–244 (1980). 60. Cragg, B. G. The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J. Anat. 101, 639–654 (1967). 61. Schuz, A. & Demianenko, G. P. Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey. J. Hirnforsch. 36, 113–122 (1995). 62. Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004). 63. Shoham, S., O’Connor, D. H. & Segev, R. How silent is the brain: is there a ‘‘dark matter’’ problem in neuroscience? J. Comp. Physiol. A 192, 777–784 (2006). 64. Born, R. T. & Bradley, D. C. Structure and function of visual area MT. Annu. Rev. Neurosci. 28, 157–189 (2005). 65. Zeki, S. Thirty years of a very special visual area, area V5. J. Physiol. 557, 1–2 (2004). 66. Mather, G., Verstraten, F. A. & Anstis, S. M. The Motion Aftereffect: a Modern Perspective (MIT Press, Cambridge, Massachusetts, 1998). 67. Tootell, R. B. H. et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic-resonance-imaging. Nature 375, 139–141 (1995). 68. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L. & Petersen, S. E. Attentional modulation of neural processing of shape, color, and velocity in humans. Science 248, 1556–1559 (1990). 69. Huk, A. C., Ress, D. & Heeger, D. J. Neuronal basis of the motion aftereffect reconsidered. Neuron 32, 161–172 (2001). 70. Blake, R. & Logothetis, N. K. Visual competition. Nature Rev. Neurosci. 3, 13–21 (2002). 71. Douglas, R. J., Martin, K. A. C. & Whitteridge, D. A canonical microcircuit for neocortex. Neural Comput. 1, 480–488 (1989). 72. Bartels, A., Logothetis, N. K. & Moutoussis, K. FMRI and its interpretations: An illustration on directional sensitivity in area V5/MT. Trends Neurosci. (in the press). Supplementary Information is linked to the online version of the paper at www.nature.com/nature. Acknowledgements I thank my co-workers A. Bartels, J. Goense, M. Munk and A.-C. Zappe for discussions; my colleagues P. Hoffmann, C. Koch, K. Martin, A. Schu¨z, C. Kayser and R. Turner for their insightful comments and suggestions on the latest version of the article; J. Goense, B. Weber and A. L. Keller for providing graphics; and D. Blaurock for language corrections. The work is supported by the Max Planck Society. Author Information Reprints and permissions information is available at www.nature.com/reprints. Correspondence should be addressed to N.K.L. (nikos.logothetis@tuebingen.mpg.de). REVIEWS NATUREjVol 453j12 June 2008 878 ©2008 Macmillan Publishers Limited. All rights reserved
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有