正在加载图片...
张坤等:焊接速度对机器人搅拌摩擦焊AA704铝合金接头组织和力学性能的影响 ·1531· η回溶峰,Ⅳ峰为高温脆性相生成峰.从图中可以 参考文献 看出,在80~220℃发生了GP区的溶解,而后当温 [1]Mishra R S,Ma Z Y.Friction stir welding and processing.Mater 度升高到300℃时,又生成了η'或m相,当温度继 Sei Eng R,2016.50(1-2):1 续升高,1相回溶,当温度高于450℃时,焊核区生 [2]Nandan R,DebRoy T,Bhadeshia H K D H.Recent advances in 成了高温脆性相. friction-stir welding-process,weldment structure and properties. Prog Mater Sci,2008,53(6):980 0.05 [3]Zhang Z H,Li W Y,Feng Y,et al.Global anisotropic response 0.04 of friction stir welded 2024 aluminum sheets.Acta Mater,2015, 0.03 92:117 0.02 [4]Zhang Z H,Li W Y,Li J L,et al.Microstructure and anisotropic 0.01 mechanical behavior of friction stir welded AA2024 alloy sheets. 06 Mater Charact,2015,107:112 [5] Threadgill PL,Leonard A J.Shercliff H R,et al.Friction stir -0.02 welding of aluminium alloys.Int Mater Rer,2009,54(2):49 -0.03 [6]Voellner G,Zach M F,Silvanus J.Influence of machine types on -0.04 FSW seam qualities /Proceedings of 7th International Friction -0.05 100 200 300400 500 600 Stir Welding Symposium.Awaji Island,2008:20 温度/℃ [Cook G E,Crawford R.Clark D E,et al.Robotic friction stir 图9焊速100 mm.min1时接头焊核区示差扫描量热随温度变 welding.Ind Robot Int J,2004,31(1):55 化的曲线 [8]Fehrenbacher A,Smith C B,Duffie NA,et al.Combined tem- Fig.9 Differential thermal curves of nugget zone robotic friction stir perature and force control for robotic friction stir welding.I Manuf welding AA7B04 at 100 mmmin! Sei Eng,2014,136(2):021007-1 [9]Smith C B,Hinrichs J F,Crusan W A.Robotic friction stir weld- 3结论 ing:state of the art /Proceedings of the Fourth International Symposium of Friction Stir Welding.Waukesha,2003:14 (1)焊接过程中搅拌头的F和F,力较小,F,力 [10]Bres A,Monsarrat B.Dubourg L,et al.Simulation of friction 较大:焊速对F影响显著,研究发现,随焊速的增 stir welding using industrial robots.Ind Robot Int J,2010,37 (1):36 加,稳定焊接阶段的F,增大,当焊速为50mm·min-1 [11]De Backer J,Christiansson A K,Oqueka J,et al.Investigation 时,稳定焊接阶段的F,约为2kN,而当焊速为500 of path compensation methods for robotic friction stir welding.Ind mm.min-1时,稳定焊接阶段的F.约为10kN. Robot Int J,2012,39(6):601 [12]Li Z H,Xiong B Q,Zhang Y A,et al.Effect of low-temperature (2)接头的抗拉强度随焊速的增加,先升高后 retrogression and re-aging treatment on the microstructure and 降低,当焊速为100 mm.min-1时最高为447MPa,可 properties of 7B04-T651 Al alloy thick plates.JUnir Sci Techn- 达母材的80%,从应力-应变曲线上可以看出,当焊 ol Beijing,2008,30(12):1383 速为50和75mm·min-1时,接头的弹性模量约为 (李志辉,熊柏青,张永安,等.低温回归再时效对7BO4- 150GPa,其余接头的弹性模量约为70GPa. T651铝合金厚板组织与性能的影响.北京科技大学学报, 2008,30(12):1383) (3)接头的硬度呈W型分布,硬度最低点出现 [13]Liu B,Peng C Q,Wang R C,et al.Recent development and 在热力影响区和焊核区的交界处:随焊速的升高,焊 prospects for giant plane aluminum alloys.Chin Nonferrous 核区的硬度随之增加 Met,2010,20(9):1705 (4)焊速为100 mm.min-1的接头的焊核区发生 (刘兵,彭超群,王日初,等.大飞机用铝合金的研究现状及 了动态再结品,为细小的等轴晶粒,分布着少量的半 展望.中国有色金属学报,2010,20(9):1705) [14]Yang C,Wang JJ,Ma Z Y,et al.Friction stir welding and low- 共格η'相和非共格η相,前进侧热影响区分布着较 temperature superplasticity of 7B04 Al sheet.Acta Metall Sin, 多的η'相,后退侧热影响区分布着较多的η'和 2015,51(12):1449 m相. (杨超,王继杰,马宗义,等.7804铝合金薄板的搅拌摩擦 (5)焊速为100mm·min接头焊核区的差热分 焊接及接头低温超塑性研究.金属学报,2015,51(12): 析表明,接头焊核区在80~220℃发生了GP区的溶 1449) 解,温度为300℃时,开始生成η'或η相,当温度继 [15]Meng L W.Investigation on Friction Stir Welding Proscess of 7B04 High Strength Aluminum Alloy Lap Joints Dissertation]. 续升高,1相回溶,当温度高于450℃时,焊核区生 Shenyang:Shenyang Aerospace University,2014 成了高温脆性相. (孟令伟.7B04高强度铝合金搭接接头搅拌摩擦焊工艺研究张 坤等: 焊接速度对机器人搅拌摩擦焊 AA7B04 铝合金接头组织和力学性能的影响 浊 回溶峰,郁峰为高温脆性相生成峰. 从图中可以 看出,在 80 ~ 220 益 发生了 GP 区的溶解,而后当温 度升高到 300 益 时,又生成了 浊忆或 浊 相,当温度继 续升高,浊 相回溶,当温度高于 450 益 时,焊核区生 成了高温脆性相. 图 9 焊速 100 mm·min - 1时接头焊核区示差扫描量热随温度变 化的曲线 Fig. 9 Differential thermal curves of nugget zone robotic friction stir welding AA7B04 at 100 mm·min - 1 3 结论 (1)焊接过程中搅拌头的 Fx和 Fy力较小,Fz力 较大;焊速对 Fz 影响显著,研究发现,随焊速的增 加,稳定焊接阶段的 Fz增大,当焊速为 50 mm·min - 1 时,稳定焊接阶段的 Fz 约为 2 kN,而当焊速为 500 mm·min - 1时,稳定焊接阶段的 Fz约为 10 kN. (2)接头的抗拉强度随焊速的增加,先升高后 降低,当焊速为 100 mm·min - 1时最高为 447 MPa,可 达母材的 80% ,从应力鄄鄄应变曲线上可以看出,当焊 速为 50 和 75 mm·min - 1 时,接头的弹性模量约为 150 GPa,其余接头的弹性模量约为 70 GPa. (3)接头的硬度呈 W 型分布,硬度最低点出现 在热力影响区和焊核区的交界处;随焊速的升高,焊 核区的硬度随之增加. (4)焊速为 100 mm·min - 1的接头的焊核区发生 了动态再结晶,为细小的等轴晶粒,分布着少量的半 共格 浊忆相和非共格 浊 相,前进侧热影响区分布着较 多的 浊忆相,后退侧热影响区分布着较多的 浊忆和 浊 相. (5)焊速为 100 mm·min - 1接头焊核区的差热分 析表明,接头焊核区在 80 ~ 220 益发生了 GP 区的溶 解,温度为 300 益时,开始生成 浊忆或 浊 相,当温度继 续升高,浊 相回溶,当温度高于 450 益 时,焊核区生 成了高温脆性相. 参 考 文 献 [1] Mishra R S, Ma Z Y. Friction stir welding and processing. Mater Sci Eng R, 2016, 50(1鄄2): 1 [2] Nandan R, DebRoy T, Bhadeshia H K D H. Recent advances in friction鄄stir welding鄄process, weldment structure and properties. Prog Mater Sci, 2008, 53(6): 980 [3] Zhang Z H, Li W Y, Feng Y, et al. Global anisotropic response of friction stir welded 2024 aluminum sheets. Acta Mater, 2015, 92: 117 [4] Zhang Z H, Li W Y, Li J L, et al. Microstructure and anisotropic mechanical behavior of friction stir welded AA2024 alloy sheets. Mater Charact, 2015, 107: 112 [5] Threadgill P L, Leonard A J, Shercliff H R, et al. Friction stir welding of aluminium alloys. Int Mater Rev, 2009, 54(2): 49 [6] Voellner G, Zaeh M F, Silvanus J. Influence of machine types on FSW seam qualities / / Proceedings of 7th International Friction Stir Welding Symposium. Awaji Island, 2008: 20 [7] Cook G E, Crawford R, Clark D E, et al. Robotic friction stir welding. Ind Robot Int J, 2004, 31(1): 55 [8] Fehrenbacher A, Smith C B, Duffie N A, et al. Combined tem鄄 perature and force control for robotic friction stir welding. J Manuf Sci Eng, 2014, 136(2): 021007鄄1 [9] Smith C B, Hinrichs J F, Crusan W A. Robotic friction stir weld鄄 ing: state of the art / / Proceedings of the Fourth International Symposium of Friction Stir Welding. Waukesha, 2003: 14 [10] Bres A, Monsarrat B, Dubourg L, et al. Simulation of friction stir welding using industrial robots. Ind Robot Int J, 2010, 37 (1): 36 [11] De Backer J, Christiansson A K, Oqueka J, et al. Investigation of path compensation methods for robotic friction stir welding. Ind Robot Int J, 2012, 39(6): 601 [12] Li Z H, Xiong B Q, Zhang Y A, et al. Effect of low鄄temperature retrogression and re鄄aging treatment on the microstructure and properties of 7B04鄄鄄T651 Al alloy thick plates. J Univ Sci Techn鄄 ol Beijing, 2008, 30(12): 1383 (李志辉, 熊柏青, 张永安, 等. 低温回归再时效对 7B04鄄鄄 T651 铝合金厚板组织与性能的影响. 北京科技大学学报, 2008, 30(12): 1383) [13] Liu B, Peng C Q, Wang R C, et al. Recent development and prospects for giant plane aluminum alloys. Chin J Nonferrous Met, 2010, 20(9): 1705 (刘兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及 展望. 中国有色金属学报, 2010, 20(9): 1705) [14] Yang C, Wang J J, Ma Z Y, et al. Friction stir welding and low鄄 temperature superplasticity of 7B04 Al sheet. Acta Metall Sin, 2015, 51(12): 1449 (杨超, 王继杰, 马宗义, 等. 7804 铝合金薄板的搅拌摩擦 焊接及接头低温超塑性研究. 金属学报, 2015, 51 ( 12 ): 1449) [15] Meng L W. Investigation on Friction Stir Welding Proscess of 7B04 High Strength Aluminum Alloy Lap Joints [Dissertation]. Shenyang: Shenyang Aerospace University, 2014 (孟令伟. 7B04 高强度铝合金搭接接头搅拌摩擦焊工艺研究 ·1531·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有