正在加载图片...
.774. 工程科学学报,第40卷,第7期 运行成本高等问题,不符合当前的钢铁行业的实际 理和控制.烧结球团.2008,33(1):25) 需求.原有成熟技术的串联应用虽然能极大减少投 [6]Zhao L,Li X L,Zhang G,et al.Test and evaluation of dust emis- 资成本,但其工艺流程较长,占地面积较大,工艺的 sions during sintering process in an iron and steel enterprise. Northeast Unir Nat Sci,2017,38(3):356 同步率较低,无法做到完全同步稳定运行且工序耗 (赵亮,李小玲,张革,等.钢铁企业烧结工序烟粉尘排放的 能较大.循环流化床和高性能烧结废气净化法在多 测试与评价.东北大学学报(自然科学版),2017,38(3): 污染物协同净化方面存在较大缺陷,不符合未来环 356) 保要求.0,多污染物协同净化工艺前期投资建设成 [7]Sun F,Gao J H,Liu X,et al.A systematic investigation of SO2 本较高,运行成本高,且整体工艺设计欠成熟,工程 removal dynamics by coal-based activated cokes:the synergic en- 应用稳定性较差,需进行进一步研究.夹带流动吸 hancement effect of hierarchical pore configuration and gas compo- nents.Appl Surf Sci,2015,357:1895 收曳流吸收塔工艺和高性能烧结废气净化工艺在烧 [8]Peng C.Zhang F L.Guo Z C.Gypsum crystallization and potassi- 结烟气脱硫方面存在优势,但其本身皆不具备脱硝 um chloride regeneration by reaction of calcium chloride solution 功能,且吸附剂循环再生能力较差,已逐渐退出国内 with potassium sulfate solution or solid.Trans Nonferrous Met Soc 市场.而作为创新工艺的新型密相半干法烟气集成 China,2010,20(4):712 治理技术以核心理论为研究出发点,通过分析研究 [9]Peng C,Zhang F L,Cheng Z C.Separation and recovery of potas- sium chloride from sintering dust of iron making works.IS//Int, 不同污染物的去除机理和相互作用,提出层进式和 2009,49(5):735 一塔式多污染物净化技术路线,从工艺设计上确保 [10]Tian S D,Hou Y C,Wu W Z,et al.Reversible absorption of 多污染物净化过程的合理性:同时,通过模型模拟开 SO,from simulated flue gas by aqueous calcium lactate solution. 发关键技术并进行严格的应用检测,确保技术的稳 J Taiwan Inst Chem Eng,2015,54:71 定性,为钢铁行业多污染物协同去除提出了新的一 [11]Ning L,Wen Y A.Calculation method of SO,emission from sin- 体化工艺 tering process.Enriron Eng,2001,19(1):55 (宁玲,文耀爱.关于烧结工艺S02排放量的计算.环境工 综上所述,当前,我国钢铁未来在选择污染物控 程,2001,19(1):55) 制技术时,在充分考虑源头减排、过程调控和降低能 [12]Lu X N.Summary of collaborative purification technology for sin- 耗的基础上,应重点考虑发展和应用,既能降低技术 tering flue gas and pollutants in iron and steel industry.Metall 投资运行成本,又可提高设备稳定运行率的多污染 Econom Manage,2016(1):22 物协同脱除技术及装备:与此同时,治污副产物的资 (卢熙宁.钢铁行业烧结烟气多污染物协同净化工艺综述 治金经济与管理,2016(1):22) 源化利用则是企业降低成本乃至提高收益的潜在途 [13]Hamzehlouyan T,Sampara C S,Li J H,et al.Kinetic study of 径:这样在实现污染物达标排放的同时,可大幅降低 adsorption and desorption of SO2 over y-Al2O and P/y-Al2O3. 企业环保设施的投资、运行和维护成本,实现企业发 Appl Catal B:Enriron,2016,181:587 展与环境保护的有机融合 [14]Liu YX,Zhou J F,Wang Q,et al.A novel process for removal of Hg from flue gas using urea/persulfate activated by high tem- perature in a spray reactor.Chem Eng Res Des,2015,104:828 参考文献 [15]Yoosefian M,Zahedi M,Mola A,et al.A DFT comparative study [1] Hao S J,Jiang W F,Zhang Y Z,et al.Methods of decreasing of single and double SO,adsorption on Pt-doped and Au-doped S0,pollution in sintering.J Hebei Inst Technol,2006,28(2):14 single-walled carbon nanotube.Appl Surf Sci,2015,349:864 (郝素菊,蒋武锋,张玉柱,等.减少烧结生产中S0,污染的 [16]Ma Z R,Wu X D,Feng Y,et al.Low-temperature SCR activity 方法.河北理工学院学报,2006,28(2):14) and S02 deactivation mechanism of Ce-modified V2Os-WO/ [2] Wang LC,Lee WJ.Tsai PJ,et al.Emissions of polychlorinated TiOz catalyst.Prog Nat Sci:Mater Int,2015,25(4):342 dibenzo-p-dioxins and dibenzofurans from stack flue gases of sinter [17]Pan J.Theoretical and Process Studies of the Abatement of Flue plants.Chemosphere,2003,50(9):1123 Gas Emissions during Iron Ore Sintering [Dissertation].Chang- [3]Karademir A,Bakoglu M,Taspinar F,et al.Removal of PCDD/ sha:Central South University,2007 Fs from flue gas by a fixed-bed activated carbon filter in a hazard- (潘建.铁矿烧结烟气减量排放基础理论与工艺研究[学位 ous waste incinerator.Environ Sci Technol,2004,38(4):1201 论文].长沙:中南大学,2007) [4]Pan J,Zhu DQ,Cui Y,et al.Emission rule of SO2 in flue gas [18]Fu M F,Li C T,Lu P,et al.A review on selective catalytic re- during sintering.J Central South Univ,2011,42(6):1495 duction of NO,by supported catalysts at 100-300 C-catalysts. [5]Jiang H Z,Song C Y,Dai Z Z,et al.Generation mechanism of mechanism,kinetics.Catal Sci Technol,2014,4:14 dioxin in sintering process and its emission control.Sinter Pelletiz, [19]Liang Z Y.Ma X Q,Lin H,et al.The energy consumption and 2008,33(1):25 environmental impacts of SCR technology in China.Appl Energy, (贾汉忠,宋存义,戴振中,等.烧结过程中二噁英的产生机 2011,88(4):1120工程科学学报,第 40 卷,第 7 期 运行成本高等问题,不符合当前的钢铁行业的实际 需求. 原有成熟技术的串联应用虽然能极大减少投 资成本,但其工艺流程较长,占地面积较大,工艺的 同步率较低,无法做到完全同步稳定运行且工序耗 能较大. 循环流化床和高性能烧结废气净化法在多 污染物协同净化方面存在较大缺陷,不符合未来环 保要求. O3多污染物协同净化工艺前期投资建设成 本较高,运行成本高,且整体工艺设计欠成熟,工程 应用稳定性较差,需进行进一步研究. 夹带流动吸 收曳流吸收塔工艺和高性能烧结废气净化工艺在烧 结烟气脱硫方面存在优势,但其本身皆不具备脱硝 功能,且吸附剂循环再生能力较差,已逐渐退出国内 市场. 而作为创新工艺的新型密相半干法烟气集成 治理技术以核心理论为研究出发点,通过分析研究 不同污染物的去除机理和相互作用,提出层进式和 一塔式多污染物净化技术路线,从工艺设计上确保 多污染物净化过程的合理性;同时,通过模型模拟开 发关键技术并进行严格的应用检测,确保技术的稳 定性,为钢铁行业多污染物协同去除提出了新的一 体化工艺. 综上所述,当前,我国钢铁未来在选择污染物控 制技术时,在充分考虑源头减排、过程调控和降低能 耗的基础上,应重点考虑发展和应用,既能降低技术 投资运行成本,又可提高设备稳定运行率的多污染 物协同脱除技术及装备;与此同时,治污副产物的资 源化利用则是企业降低成本乃至提高收益的潜在途 径;这样在实现污染物达标排放的同时,可大幅降低 企业环保设施的投资、运行和维护成本,实现企业发 展与环境保护的有机融合. 参 考 文 献 [1] Hao S J, Jiang W F, Zhang Y Z, et al. Methods of decreasing SO2 pollution in sintering. J Hebei Inst Technol, 2006, 28(2): 14 (郝素菊, 蒋武锋, 张玉柱, 等. 减少烧结生产中 SO2 污染的 方法. 河北理工学院学报, 2006, 28(2): 14) [2] Wang L C, Lee W J, Tsai P J, et al. Emissions of polychlorinated dibenzo鄄p鄄dioxins and dibenzofurans from stack flue gases of sinter plants. Chemosphere, 2003, 50(9): 1123 [3] Karademir A, Bakoglu M, Taspinar F, et al. Removal of PCDD/ Fs from flue gas by a fixed鄄bed activated carbon filter in a hazard鄄 ous waste incinerator. Environ Sci Technol, 2004, 38(4): 1201 [4] Pan J, Zhu D Q, Cui Y, et al. Emission rule of SO2 in flue gas during sintering. J Central South Univ, 2011, 42(6):1495 [5] Jiang H Z, Song C Y, Dai Z Z, et al. Generation mechanism of dioxin in sintering process and its emission control. Sinter Pelletiz, 2008, 33(1): 25 (贾汉忠, 宋存义, 戴振中, 等. 烧结过程中二噁英的产生机 理和控制. 烧结球团, 2008, 33(1): 25) [6] Zhao L, Li X L, Zhang G, et al. Test and evaluation of dust emis鄄 sions during sintering process in an iron and steel enterprise. J Northeast Univ Nat Sci, 2017, 38(3): 356 (赵亮, 李小玲, 张革, 等. 钢铁企业烧结工序烟粉尘排放的 测试与评价. 东北大学学报(自然科学版), 2017, 38 (3 ): 356) [7] Sun F, Gao J H, Liu X, et al. A systematic investigation of SO2 removal dynamics by coal鄄based activated cokes: the synergic en鄄 hancement effect of hierarchical pore configuration and gas compo鄄 nents. Appl Surf Sci, 2015, 357: 1895 [8] Peng C, Zhang F L, Guo Z C. Gypsum crystallization and potassi鄄 um chloride regeneration by reaction of calcium chloride solution with potassium sulfate solution or solid. Trans Nonferrous Met Soc China, 2010, 20(4): 712 [9] Peng C, Zhang F L, Cheng Z C. Separation and recovery of potas鄄 sium chloride from sintering dust of iron making works. ISIJ Int, 2009, 49(5): 735 [10] Tian S D, Hou Y C, Wu W Z, et al. Reversible absorption of SO2 from simulated flue gas by aqueous calcium lactate solution. J Taiwan Inst Chem Eng, 2015, 54: 71 [11] Ning L, Wen Y A. Calculation method of SO2 emission from sin鄄 tering process. Environ Eng, 2001, 19(1): 55 (宁玲, 文耀爱. 关于烧结工艺 SO2 排放量的计算. 环境工 程, 2001, 19(1): 55) [12] Lu X N. Summary of collaborative purification technology for sin鄄 tering flue gas and pollutants in iron and steel industry. Metall Econom Manage, 2016(1): 22 (卢熙宁. 钢铁行业烧结烟气多污染物协同净化工艺综述. 冶金经济与管理, 2016(1): 22) [13] Hamzehlouyan T, Sampara C S, Li J H, et al. Kinetic study of adsorption and desorption of SO2 over 酌鄄Al2O3 and Pt / 酌鄄Al2O3 . Appl Catal B: Environ, 2016, 181: 587 [14] Liu Y X, Zhou J F, Wang Q, et al. A novel process for removal of Hg 0 from flue gas using urea / persulfate activated by high tem鄄 perature in a spray reactor. Chem Eng Res Des, 2015, 104: 828 [15] Yoosefian M, Zahedi M, Mola A, et al. A DFT comparative study of single and double SO2 adsorption on Pt鄄doped and Au鄄doped single鄄walled carbon nanotube. Appl Surf Sci, 2015, 349: 864 [16] Ma Z R, Wu X D, Feng Y, et al. Low鄄temperature SCR activity and SO2 deactivation mechanism of Ce鄄modified V2O5 鄄鄄 WO3 / TiO2 catalyst. Prog Nat Sci: Mater Int, 2015, 25(4): 342 [17] Pan J. Theoretical and Process Studies of the Abatement of Flue Gas Emissions during Iron Ore Sintering [Dissertation]. Chang鄄 sha: Central South University, 2007 (潘建. 铁矿烧结烟气减量排放基础理论与工艺研究[学位 论文]. 长沙: 中南大学, 2007) [18] Fu M F, Li C T, Lu P, et al. A review on selective catalytic re鄄 duction of NOx by supported catalysts at 100 - 300 益—catalysts, mechanism, kinetics. Catal Sci Technol, 2014, 4: 14 [19] Liang Z Y, Ma X Q, Lin H, et al. The energy consumption and environmental impacts of SCR technology in China. Appl Energy, 2011, 88(4): 1120 ·774·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有