正在加载图片...
If M=l, then p2/p,=p2/p=T/T=1; i.e., we have the case of a normal shock wave of vanishing strength---a Mach wave 如果M1=1,那么有P2/P=P2/A=T2/71=1;即正 激波是无限弱的马赫波。 As M, increases above 1, p2/p,, p2/p,, and T /T progressively increase above 1.当M1大于1逐渐增加时, P2/B,P2/B1,和T2/也逐渐沿大于1的趋势增大。 lim M2-\ 2r 0.378 M1→>∞ y+1 M1→>∝ M1→P1 M1→>0110.378 2 1 lim 2 1 = − = →   M M 6 1 1 1 2 1 2 1 2 lim lim lim 1 1 1 =  =  = − + = → → → T T p p M M M     If M1=1, then ; i.e., we have the case of a normal shock wave of vanishing strength---a Mach wave. 如果M1=1,那么有 ;即正 激波是无限弱的马赫波。 As M1 increases above 1, progressively increase above 1. 当 M1 大于1逐渐增加时, 也逐渐沿大于1的趋势增大。 p2 p1 = 2 1 =T2 T1 =1 p2 p1 = 2 1 =T2 T1 =1 2 1 2 1 2 1 p p ,  , and T T 2 1 2 1 2 1 p p ,  ,和T T
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有