工程科学学报.第43卷,第11期:1543-1551.2021年11月 Chinese Journal of Engineering,Vol.43,No.11:1543-1551,November 2021 https://doi.org/10.13374/j.issn2095-9389.2020.06.08.002;http://cje.ustb.edu.cn 陶瓷膜孔道内尘粒沉积及脱附的模拟 熊瑞2),张佳钰2),闫明伟2),孙广超,2),刘开琪12)区 1)中国科学院过程工程研究所多相复杂系统国家重点实验室,北京1001902)中国科学院过程工程研究所南京绿色制造产业创新研究 院,南京211135 ☒通信作者,E-mail:kgliu@ipe.ac.cn 摘要陶瓷膜是过滤高温含尘烟气最有效的材料之一,其过滤性能和再生性能与尘粒在陶瓷膜孔道内的沉积和脱附机制 相关.本文建立了不同孔隙率的陶瓷膜物理模型,然后结合连续性方程、动量方程和能量方程,设定边界条件以及沉积条件, 模拟了陶瓷膜过滤和脉冲反吹时,高温烟气的流动以及尘粒的沉积与脱附过程.结果表明,过滤速度较低和陶瓷膜孔隙率较 高时,尘粒易于沉积在陶瓷膜孔道内:脉冲反吹时,增加反吹压力,延长反吹时间,尘粒易于从陶瓷膜孔道脱附.采用厚度为 20mm.长度为1.5m.孔隙率为40%的陶瓷膜管过滤温度为1000℃.流速为1mmin,压力为0.1MPa的含尘烟气时,反吹气 压力应不低于0.3MPa.反吹时间不短于0.02s.尘粒脱附时间在13s.脉冲反吹时间间隔应高于452s 关键词陶瓷膜;过滤:反吹;沉积;脱附 分类号TQ174.9 Numerical simulation of the fouling and cleaning of a ceramic membrane XIONG Ru2),ZHANG Jia-yu2),YAN Ming-wei2)SUN Guang-chao2)LIU Kai-gi2 1)State Key Laboratory of Multiphase Complex Systems,Institute of Process Engineering,Chinese Academy of Sciences,Beijing 100190,China 2)Nanjing IPE Institute of Green Manufacturing Industry,Institute of Process Engineering,Chinese Academy of Sciences,Nanjing 211135,China Corresponding author,E-mail:kqliu@ipe.ac.cn ABSTRACT The main sources of fine particulate matter in the air are automobile exhaust and dust-containing hot flue gas emitted from combustion in the process of industrial manufacturing and municipal solid waste incineration,both of which are hard to clean at high temperatures.Ceramic membranes maintain high strength at high temperatures and an acid or alkaline atmosphere,and have a micron-scale and tortuous pores that block dust particles.The ceramic membrane is one of the most effective materials for successful hot flue gas cleaning as used in the integrated gasification combined cycle.Its filtration and regeneration performance are related to the deposition and desorption mechanism of dust particles in the channel of the membrane.In this study,a physical model of ceramic membranes of various porosities was established.Boundary and deposition conditions were then set up by combining continuity, momentum,and energy equations to simulate the flow of hot flue gas and the deposition and desorption process of dust particles during ceramic membrane filtration and pulse back-blowing.The results show that when the filtration velocity is low and porosity of the ceramic membrane is high,it is easy for dust particles to deposit in the membrane channel.Increasing back-blowing pressure prolongs back-blowing time during pulse back-blowing so that dust particles easily desorb from the channel of the ceramic membrane.When a ceramic membrane tube with a thickness of 20 mm,a length of 1.5 m,and a porosity of 40%is used to filtrate flue gas with a filtration temperature of 1000C,a flow rate of 1 m-min,and a pressure of 0.1 MPa,the blowback pressure should not be <0.3 MPa,blowback time should be longer than 0.02 s,and pulse blowback time interval should be more than 452 s. KEY WORDS ceramic membrane;filtration;pulse-jet back blowing;deposition;desorption 收稿日期:2020-06-08 基金项目:多相复杂系统国家重点实验室自主研究课题资助项目(MPCS-2021-C01)陶瓷膜孔道内尘粒沉积及脱附的模拟 熊 瑞1,2),张佳钰1,2),闫明伟1,2),孙广超1,2),刘开琪1,2) 苣 1) 中国科学院过程工程研究所多相复杂系统国家重点实验室, 北京 100190 2) 中国科学院过程工程研究所南京绿色制造产业创新研究 院, 南京 211135 苣通信作者, E-mail: kqliu@ipe.ac.cn 摘 要 陶瓷膜是过滤高温含尘烟气最有效的材料之一,其过滤性能和再生性能与尘粒在陶瓷膜孔道内的沉积和脱附机制 相关. 本文建立了不同孔隙率的陶瓷膜物理模型,然后结合连续性方程、动量方程和能量方程,设定边界条件以及沉积条件, 模拟了陶瓷膜过滤和脉冲反吹时,高温烟气的流动以及尘粒的沉积与脱附过程. 结果表明,过滤速度较低和陶瓷膜孔隙率较 高时,尘粒易于沉积在陶瓷膜孔道内;脉冲反吹时,增加反吹压力,延长反吹时间,尘粒易于从陶瓷膜孔道脱附. 采用厚度为 20 mm,长度为 1.5 m,孔隙率为 40% 的陶瓷膜管过滤温度为 1000 ℃,流速为 1 m·min−1,压力为 0.1 MPa 的含尘烟气时,反吹气 压力应不低于 0.3 MPa,反吹时间不短于 0.02 s,尘粒脱附时间在 13 s,脉冲反吹时间间隔应高于 452 s. 关键词 陶瓷膜;过滤;反吹;沉积;脱附 分类号 TQ174.9 Numerical simulation of the fouling and cleaning of a ceramic membrane XIONG Rui1,2) ,ZHANG Jia-yu1,2) ,YAN Ming-wei1,2) ,SUN Guang-chao1,2) ,LIU Kai-qi1,2) 苣 1) State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China 2) Nanjing IPE Institute of Green Manufacturing Industry, Institute of Process Engineering, Chinese Academy of Sciences, Nanjing 211135, China 苣 Corresponding author, E-mail: kqliu@ipe.ac.cn ABSTRACT The main sources of fine particulate matter in the air are automobile exhaust and dust-containing hot flue gas emitted from combustion in the process of industrial manufacturing and municipal solid waste incineration, both of which are hard to clean at high temperatures. Ceramic membranes maintain high strength at high temperatures and an acid or alkaline atmosphere, and have a micron-scale and tortuous pores that block dust particles. The ceramic membrane is one of the most effective materials for successful hot flue gas cleaning as used in the integrated gasification combined cycle. Its filtration and regeneration performance are related to the deposition and desorption mechanism of dust particles in the channel of the membrane. In this study, a physical model of ceramic membranes of various porosities was established. Boundary and deposition conditions were then set up by combining continuity, momentum, and energy equations to simulate the flow of hot flue gas and the deposition and desorption process of dust particles during ceramic membrane filtration and pulse back-blowing. The results show that when the filtration velocity is low and porosity of the ceramic membrane is high, it is easy for dust particles to deposit in the membrane channel. Increasing back-blowing pressure prolongs back-blowing time during pulse back-blowing so that dust particles easily desorb from the channel of the ceramic membrane. When a ceramic membrane tube with a thickness of 20 mm, a length of 1.5 m, and a porosity of 40% is used to filtrate flue gas with a filtration temperature of 1000 °C, a flow rate of 1 m·min−1, and a pressure of 0.1 MPa, the blowback pressure should not be <0.3 MPa, blowback time should be longer than 0.02 s, and pulse blowback time interval should be more than 452 s. KEY WORDS ceramic membrane;filtration;pulse-jet back blowing;deposition;desorption 收稿日期: 2020−06−08 基金项目: 多相复杂系统国家重点实验室自主研究课题资助项目(MPCS-2021-C-01) 工程科学学报,第 43 卷,第 11 期:1543−1551,2021 年 11 月 Chinese Journal of Engineering, Vol. 43, No. 11: 1543−1551, November 2021 https://doi.org/10.13374/j.issn2095-9389.2020.06.08.002; http://cje.ustb.edu.cn