正在加载图片...
1480 工程科学学报,第42卷,第11期 steel plates and welding consumables for large heat-input welding (李文晓,郭慧英,陈刚,等.大线能量焊接EH36船板钢FCB焊接 for giant container ships.Kobe Steel Eng Rep,2002,52(1):2 接头组织与性能.电焊机,2017,47(8):1) (岡野重雄,小林洋一郎,柴田光明,等.大型口テ十船用大入 [25]Lee J L,Pan Y T.The formation of intragranular acicular ferrite in 熱溶接型YP355~460MPa级钢板及溶接材料.神戶製鋼技 simulated heat-affected zone./SI/In,1995.35(8):1027 報,2002,52(1):2) [26]Wang C.Microstructure and Properties Control of Oxide Met- [17]Zheng W.Liu L,Li G Q.et al.Refinement mechanisms of allurgical Steels for High Heat Input Welding and Its Production inclusions in steel by Ti-Mg complex deoxidation.Chin J Eng, Technology Research[Dissertation].Shenyang:Northeastern Uni- 2015,37(7):873 versity,2017 (郑万,刘磊,李光强,等.T-Mg复合脱氧钢中夹杂物细化机制 (王超.氧化物治金型大线能量焊接用钢组织性能调控与生产 工程科学学报,2015,37(7):873) 工艺研究学位论文].沈阳:东北大学,2017) [18]Shen H J.Research on Control Technology for Super-Fine [27]Lou H N,Wang C,Wang B X,et al.Inclusion evolution behavior Inclusions in Low Carbon Steel[Dissertation].Shenyang of Ti-Mg oxide metallurgy steel and its effect on a high heat inpu Northeastern University,2008 welding HAZ.Metals,2018,8(7):534 (沈海军.低碳钢中超细夹杂物控制技术研究学位论文].沈阳: [28]Kim Y M,Lee H,Kim N J.Transformation behavior and 东北大学,2008) microstructural characteristics of acicular ferrite in linepipe steels [19]Wang B X,Wu ZZ,Lou H N,et al.Effect of oxide metallurgy on Mater Sci Eng4,2008,478(1-2:361 microstructure and properties of HAZ in EH36 steel.J fron Steel [29]Sung H K,Sang S Y,Cha W,et al.Effects of acicular ferrite on Res,2019,31(2):239 charpy impact properties in heat affected zones of oxide (王丙兴,武仲子,娄号南,等.氧化物冶金工艺对EH36钢HAZ组 containing API X80 linepipe steels.Mater Sci Eng A,2011, 织性能的影响.钢铁研究学报,2019,31(2):239) 528(9:3350 [20]Deng XX,Wang X H,Jiang M,et al.Effect of inclusions on the [30]Li YY,Wu M F,Pu J.Study on microstructure and mechanical formation of intra-granular acicular ferrite in steels containing rare earth elements.JUniv Sci Technol Beijing,2012,34(5):535 properties of FAB submerged arc weld for DH36 ship plate with different thickness.Hot Work Technol,2017,46(7):232 (邓小旋,王新华,姜敏,等.稀土处理钢中夹杂物对品内针状铁 (李远远,吴铭方,浦娟.不同厚度DH36船用板FAB埋弧焊缝微 素体形成的影响.北京科技大学学报,2012,34(5):535) [21]Zhang P.Wang X S,Long J,et al.Development and 观组织及力学性能研究.热加工工艺,2017,46(7):232) [31]Shu W,Wang X M,Li S R,et al.Nucleation and growth of microstructure analysis of high strength steel plate used for polar icebreaker and polar transport ships/Proceedings of the Tweny intergranular acicular ferrite and its effect on grain refinement of eighth International Ocean and Polar Engineering Conference the heat-affected-zone.Acta Metall Sinica,2011,47(4):435 Sapporo,2018:1569 (舒玮,王学敏,李书瑞,等.焊接热彩响区针状铁素体的形核长 [22]Zhu K,Yang J,Wang R Z,et al.Effect of Mg addition on 大及其对组织的细化作用.金属学报,2011,47(4):435) inhibiting austenite grain growth in heat affected zones of Ti- [32]Shim J H,Cho Y W,Chung S H,et al.Nucleation of intragranular bearing low carbon steels.J Iron Steel Res Int,2011,18(9):60 ferrite at TiO;particle in low carbon steel.Acta Mater.,1999, [23]Wang B X,Zhu F X,Wang C,et al.Application of oxide 47(9):2751 metallurgy in high heat input welding steels.Iron Steel,2019, [33]Mabuchi H,Uemori R,Fujioka M.The role of Mn depletion in 54(9):12 intra-granular ferrite transformation in the heat affected zone of (王丙兴,朱伏先,王超,等.氧化物冶金在大线能量焊接用钢中 welded joints with large heat input in structural steels.IS//Int, 的应用.钢铁,2019,54(9):12) 1996,36(11):1406 [24]Li W X,Guo H Y,Chen G,et al.Microstructure and properties of [34]Zhuo X J,Wang Y Q,Wang X H,et al.Thermodynamic FCB weld joint of shipbuilding steel EH36 for high heat input calculation and MnS solubility of Mn-Ti oxide formation in welding.Electr Weld Mach,2017,47(8):1 Si-Mn-Ti deoxidized steel.J /ron Steel Res Int,2010,17(2):10steel plates and welding consumables for large heat-input welding for giant container ships. Kobe Steel Eng Rep, 2002, 52(1): 2 (岡野重雄, 小林洋一郎, 柴田光明, 等. 大型コンテナ船用大入 熱溶接型 YP355~460 MPa級鋼板及び溶接材料. 神戸製鋼技 報, 2002, 52(1):2) Zheng  W,  Liu  L,  Li  G  Q,  et  al.  Refinement  mechanisms  of inclusions  in  steel  by  Ti−Mg  complex  deoxidation. Chin J Eng, 2015, 37(7): 873 (郑万, 刘磊, 李光强, 等. Ti−Mg复合脱氧钢中夹杂物细化机制. 工程科学学报, 2015, 37(7):873) [17] Shen  H  J. Research on Control Technology for Super-Fine Inclusions in Low Carbon Steel[Dissertation].  Shenyang: Northeastern University, 2008 (沈海军. 低碳钢中超细夹杂物控制技术研究[学位论文]. 沈阳: 东北大学, 2008) [18] Wang B X, Wu Z Z, Lou H N, et al. Effect of oxide metallurgy on microstructure and properties of HAZ in EH36 steel. J Iron Steel Res, 2019, 31(2): 239 (王丙兴, 武仲子, 娄号南, 等. 氧化物冶金工艺对EH36钢HAZ组 织性能的影响. 钢铁研究学报, 2019, 31(2):239) [19] Deng X X, Wang X H, Jiang M, et al. Effect of inclusions on the formation of intra-granular acicular ferrite in steels containing rare earth elements. J Univ Sci Technol Beijing, 2012, 34(5): 535 (邓小旋, 王新华, 姜敏, 等. 稀土处理钢中夹杂物对晶内针状铁 素体形成的影响. 北京科技大学学报, 2012, 34(5):535) [20] Zhang  P,  Wang  X  S,  Long  J,  et  al.  Development  and microstructure analysis of high strength steel plate used for polar icebreaker and polar transport ships // Proceedings of the Twenty￾eighth International Ocean and Polar Engineering Conference. Sapporo, 2018: 1569 [21] Zhu  K,  Yang  J,  Wang  R  Z,  et  al.  Effect  of  Mg  addition  on inhibiting  austenite  grain  growth  in  heat  affected  zones  of  Ti￾bearing low carbon steels. J Iron Steel Res Int, 2011, 18(9): 60 [22] Wang  B  X,  Zhu  F  X,  Wang  C,  et  al.  Application  of  oxide metallurgy  in  high  heat  input  welding  steels. Iron Steel,  2019, 54(9): 12 (王丙兴, 朱伏先, 王超, 等. 氧化物冶金在大线能量焊接用钢中 的应用. 钢铁, 2019, 54(9):12) [23] Li W X, Guo H Y, Chen G, et al. Microstructure and properties of FCB  weld  joint  of  shipbuilding  steel  EH36  for  high  heat  input welding. Electr Weld Mach, 2017, 47(8): 1 [24] (李文晓, 郭慧英, 陈刚, 等. 大线能量焊接EH36船板钢FCB焊接 接头组织与性能. 电焊机, 2017, 47(8):1) Lee J L, Pan Y T. The formation of intragranular acicular ferrite in simulated heat-affected zone. ISIJ Int, 1995, 35(8): 1027 [25] Wang  C. Microstructure and Properties Control of Oxide Met￾allurgical Steels for High Heat Input Welding and Its Production Technology Research[Dissertation].  Shenyang:  Northeastern  Uni￾versity, 2017 (王超. 氧化物冶金型大线能量焊接用钢组织性能调控与生产 工艺研究[学位论文]. 沈阳: 东北大学, 2017) [26] Lou H N, Wang C, Wang B X, et al. Inclusion evolution behavior of Ti−Mg oxide metallurgy steel and its effect on a high heat input welding HAZ. Metals, 2018, 8(7): 534 [27] Kim  Y  M,  Lee  H,  Kim  N  J.  Transformation  behavior  and microstructural characteristics of acicular ferrite in linepipe steels. Mater Sci Eng A, 2008, 478(1-2): 361 [28] Sung H K, Sang S Y, Cha W, et al. Effects of acicular ferrite on charpy  impact  properties  in  heat  affected  zones  of  oxide￾containing  API  X80  linepipe  steels. Mater Sci Eng A,  2011, 528(9): 3350 [29] Li Y Y, Wu M F, Pu J. Study on microstructure and mechanical properties of FAB submerged arc weld for DH36 ship plate with different thickness. Hot Work Technol, 2017, 46(7): 232 (李远远, 吴铭方, 浦娟. 不同厚度DH36船用板FAB埋弧焊缝微 观组织及力学性能研究. 热加工工艺, 2017, 46(7):232) [30] Shu  W,  Wang  X  M,  Li  S  R,  et  al.  Nucleation  and  growth  of intergranular acicular ferrite and its effect on grain refinement of the heat-affected-zone. Acta Metall Sinica, 2011, 47(4): 435 (舒玮, 王学敏, 李书瑞, 等. 焊接热影响区针状铁素体的形核长 大及其对组织的细化作用. 金属学报, 2011, 47(4):435) [31] Shim J H, Cho Y W, Chung S H, et al. Nucleation of intragranular ferrite  at  Ti2O3 particle  in  low  carbon  steel. Acta Mater.,  1999, 47(9): 2751 [32] Mabuchi  H,  Uemori  R,  Fujioka  M.  The  role  of  Mn  depletion  in intra-granular  ferrite  transformation  in  the  heat  affected  zone  of welded  joints  with  large  heat  input  in  structural  steels. ISIJ Int, 1996, 36(11): 1406 [33] Zhuo  X  J,  Wang  Y  Q,  Wang  X  H,  et  al.  Thermodynamic calculation  and  MnS  solubility  of  Mn−Ti  oxide  formation  in Si−Mn−Ti deoxidized steel. J Iron Steel Res Int, 2010, 17(2): 10 [34] · 1480 · 工程科学学报,第 42 卷,第 11 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有