正在加载图片...
820 Journal of the American Ceramic Sociery-Kahraman ef al Vol. 80. No. 7 ceramic matrix composite. The data were obtained for Nicalon/ ings on Interfaces in Composites 193-204. Edited by C. G. Pantano and CAS-Il over the range from 20 to 1000oC. GIe did decrease urgh, PA, 1990. moderately with increasing temperature(as does the bulk ma Evaluating Trans- trix), but no evidence of an interphase oxidizing effect on crack er.Scl.Let,1u12]51l-55(1982) growth could be found. Even after fracturing and being ex- posedonthefracturesurfaceduringcool-down,interfacesnearF2lugsmodeglaminationandTRansverseCracking.compos,.Mater20 bond strength. The more open side showed higher bond Publishers, Dordrecht, Nether strength(and a flatter fracture surface42 as expected ). Cracks would not grow in the oxidizing environment at GI values Bradt, D P H New York, 1973 htly below Grc(for a 3 h exposure time), and oxidation did ng Time-Dependent Failure Charact not occur on the part of the fracture surface which was cracked Mater. Sci. 7(10) 1137-45(1972) but not widely opened during the test 2D P. williams and A G. Evans, ""Simple Method for Studying Slow Crack Acknowle ch would not have occurred without the 26A. G. Evans and S M. Wiederhorm, ""Crack Propagation and Failu tride at Elevated Te nd University of Petroleum an onle enck ies arad wr e: p. 4 3-9 edited byg l Peat chap mat and an New York. 1969. E.R. Fuller, Jr, "Fracture Mechanics Applied to Brittle Materials: References P man. American Society for Testing and Materials, Philadelphia, PA, 1979 1-56 in High Temperature/High Performance Composites, Edited 20. Sano,"'A Revision of the Double Torsion Technique for Brittle Mate Lemkey, S.G. Fishman, A G. Evans, and J.R. Strife. Materials Re- rials, J. Mater. Sci, 23, 2505-1l(i988) J O. Stiegler, "Structural Ceramics R& D, " Adv. Mater. Ceram Soc., 60 [7-8]33841(197 Processes,138355-61(1990 3C. G. Annis and J S. Cargill, Fracture Mechanics of Ceramics: pp. 737 ties for Com- 44. Edited C. Bradt, D. P H. Hasselman, and F. F. Lange. Plenum Press, New York, 1973 3P. S. Leevers, Crack Front Shape Effects in the Double Torsion Test, J. R B. Tait, P. R. Fry, and G.G. Garrett, " Review and Evaluation of the with High Tensile Strength, J. Am. Ceram. Soc., 59[7-8] Double Torsion Technique for Fracture Toughness and Fatigue Testing 324-27(1976) "T- L. Mah, M. G. Mendiratta, A.P. Katz, and K S. Mazdiyasni,"Recent D. K Shetty and A. v. virkar, mination of useful ri Specimens, J Am. Ceram Soc., 61[1-2]93-94 Am. Ceran Soc. Bull, 66 (2]304-18(1987 of Fiber matrix 33J. B Schutz, "Test Methods and Analysis for Glass-Ceramic Matrix Com nic ma- triNicalon Fiber Composites"; Pp, 349-60 in Proceedings of the Ce R. Shercliff, and M. F. Ashby, ""Delamination, Fiber Composite Ceramics. Edited by r. e. Tressler of Ceramic Matrix Composites, Acta Metall, G L. Messing, C G. Pantano, and R. E. Newnham. Plenum Press, New York, 417]195970(1993). D. A. W. Kaute, H. R. Shercliff, and M. F. Ashby, 9R. I Kerans, R S. Hay, N I. Pagano, andT. A Parthasarathy "The Role of m. Ceram. Soc. BulL. 68 [2]42942(1989) Reinforced Brittle Matrix Composites, J. sci.29,3857-%6( E Y Luh and A G. Evans, "High Temperature Me Transverse 啊Pmm.D Modified R. L Stewart, K. Chyung, M. P. Taylor, and R F. Cooper, "Fracture of pp.87-108 in ASTM Special Te Publica- mics of Ceramics. Edited by r c. Bradt, D H. Grande, J F. Mandell, and K CC. Hong, Fiber-Matrix Bond M. Huger, D. Fargeot, and C. Gault, "Ultrasonic Characterization of chanisms in Nicalon/C/SiC Composites, "J. Am. Ceram. Soc., 77[10] sci,23,311-28(1988) 2554-60(1994) 42R. Kahraman, "" Influence of Fiber-Matrix Interphase on High Temperature "Oxidation Mechanisms and Ki Ph.D. the 3J. F. Shackelford, Introduction to Materials Science for rs. Mac uzzi and R. naslain, *Oxidation Mechanisms and Kinetics of ID- g Development and Failure of Fiber SCorning Inc, private communication to Dr. J. F. Mandell, 1992 einforced Ceramic matrix C Ph. D. Thesis, Massachusetts Institute A. G. Evans, ' Stress nidirectional Ceramic Matrix Composite, "J. Am. Ceram, Soc.. 77 R. A. Shimansky, H. T. Hahn, and N J. Salamon, ""Symposium Proceed- 0(19941820 Journal of the American Ceramic SocietpKahraman et al. Vol. 80, No. 7 ceramic matrix composite. The data were obtained for Nicalod CAS-II over the range from 20” to 1ooo”C. GI, did decrease moderately with increasing temperature (as does the bulk ma￾trix), but no evidence of an interphase oxidizing effect on crack growth could be found. Even after fracturing and being ex￾posed on the fracture surface during cool-down, interfaces near the less open side of the fracture surface showed no increase in bond strength. The more open side showed higher bond strength (and a flatter fracture surface4* as expected). Cracks would not grow in the oxidizing environment at GI values slightly below GI, (for a 3 h exposure time), and oxidation did not occur on the part of the fracture surface which was cracked but not widely opened during the test. Acknowledgments: This research would not have occurred without the composite materials supplied by Corning. Inc., their help is acknowledged. We also wish to acknowledge the donation of high-temperature testing equipment by Instron Corp. Montana State University is acknowledged for its support. R. Kahraman also acknowledges King Fahd University of Petroleum and Minerals. References ‘K. M. Prewo, “Glass and Ceramic Matrix Composites-Present and Fu￾ture”; pp. 145-56 in High Temperarurdfigh Performance Composites. Edited by F. D. Lemkey, S. G. Fishman, A. G. Evans, and I. R. Strife. Materials Re￾search Society, Pittsburgh, PA, 1988. 2D. R. Johnson and J. 0. Stiegler, “Structural Ceramics R & D,” Adv. Mater. Processes, 138 131 55-61 (1990). 3K. M. Prewo, “Fiber Reinforced Ceramics-New Opportunities for Com￾posite Materials,’’ Am. Cemm. SOC. Bull., 68 [2] 395-400 (1989). 4G. Simon and A. R. Bunsell, “Mechanical and Structural Characterization of the Nicalon Silicon-Carbide Fiber,” J. Marer. Sci., 19 [I 11 3649-57 (1984). 5S. Yajima, K. Okamura, I. Hayashi. and M. Omori, “Synthesis of Continu- ous Sic Fibers with High Tensile Strength,” J. Am. Ceram Soc., 59 [7-8] 324-27 (1976). 6T.4. Mah, M. G. Mendmtta, A. P. Katz, and K. S. Mazdiyasni, “Recent Developments in Fiber Reinforced High Temperature Ceramic Composites,” Am. Ceram. Soc. Bull., 66 [2] 304-18 (1987). ’R. F. Cooper and K. Chyung, “Structure and Chemistry of Fiber Matrix Interfaces in Silicon Carbide Fiber Reinforced Glass Ceramic Composites-An Electron Microscopy Study,” J. Marer. Sci., 22,3148-60 (1987). ‘J. I. Brennan, “Interfacial Characterization of Glass and Glass-Ceramic Ma￾trix/Nicalon Fiber Composites”; pp. 549-60 in Proceedings of the Conference on Tailoring Multiphase and Composite Ceramics. Edited by R. E. Tressler, G. L. Messing, C. G. Pantano, and R. E. Newnham. Plenum Press, New York, 1986. 9R. J. Kerans, R. S. Hay, N. J. Pagano, and T. A. Parthasarathy, “The Role of the Fiber Matrix Interface in Ceramic Composites,’’ Am. Ceram. SOC. Bull., 68 [2] 429-42 (1989). ‘Vorning Inc., private communication to Dr. J. F. Mandell, 1991. “E. Y. Luh and A. G. Evans, “High Temperature Mechanical Properties of a Ceramic Matrix Composite,’’ J. Am. Ceram. Soc., 70 [7] 466-69 (1987). lzK. M. Prewo, “Tension and Flexural Strength of Silicon Carbide Fibre Reinforced Glass Ceramics,” J. Muter. Sci., 21, 3590-600 (1986). ”R. L. Stewart, K. Chyung, M. P. Taylor, and R. F. Cooper, “Fracture of Sic FiberKLass-Ceramic Composites as a Function of Temperature”; pp. 33-51 in Fracture Mechanics of Ceramics. Edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman. and F. F. Lange. Plenum Press, New York, 1986. I4M. Huger, D. Fargeot, and C. Gault, “Ultrasonic Characterization of Oxi￾dation Mechanisms in Nicalon/C/SiC Composites,” J. Am. Ceram. Soc., 77 [lo] 2554-60 (1994). I5L. Filipuzzi. G. Camus, and R. Naslain, “Oxidation Mechanisms and Ki￾netics of ID-SiUUSiC Composite Materials: I, An Experimental Approach, ” J. Am. Ceram. SOC., 77 [2] 459-66 (1994). I6L. Filipuzzi and R. Naslain, “Oxidation Mechanisms and Kinetics of ID￾SiC/USiC Composite Materials: II, Modeling,” J. Am. Ceram. Soc., 77 [2] 467-80 (1994). “K. A. Dannemann, “Damage Development and Failure of Fiber￾Reinforced Ceramic Matrix Composites”; Ph.D. Thesis. Massachusetts Institute of Technology, Cambridge, MA, 1989. ISR. A. Shimansky, H. T. Hahn. and N. J. Salamon, “Symposium Proceed￾ings on Interfaces in Composites”; pp. 193-204. Edited by C. G. Pantano and E. J. H. Chen. Materials Research Society. Pittsburgh, PA, 1990. I9J. F. Mandell, personal communication, 1991. 2oS. M. Lee:, “Double Torsion Fracture Toughness Test for Evaluating Trans￾verse Cracking in Composites,’’ J. Muter. Sci. Lett., 1 [I21 511-55 (1982). 21S. M. Lee, “A Comparison of Fracture Toughness of Matrix Controlled Failure Modes: Delamination and Transverse Cracking,” J. Compos. Muter. 20 [2] 185-96 (1986). 22D. Bmek, Elementary Engineering Fracrure Mechanics. Martinus Nijhoff Publishers, Dordrecht, Netherlands, 1987. ”A. G. Evans, Fracture Mechanics of Ceramics; pp. 1748. Edited by R. C. Bradt, D. P. H. Hasselman. and F. F. Lange. Plenum Press, New York, 1973. ”A. G. Evans, “Method for Evaluating Time-Dependent Failure Character￾istics of Brittle Materials and Its Application to Polycrystalline Alumina,” J. Marer. Sci.. 7 [lo] 113745 (1972). 25D. P. Williams and A. G. Evans, “Simple Method for Studying Slow Crack Growth.” J. Test. Eval. 1 [4] 261-70 (1973). z6A. G. Evans and S. M. Wiederhorn, “Crack Propagation and Failure Pre￾diction in Silicon Nitride at Elevated Temperatures,” J. Mater. Sci., 9 [2] 270-78 (1974). 27J. A. Kies and A. B. I. Clark, Proceedings of the Second International Conference on Fracture: pp. 483-91. Edited by P. L. Pratt. Chapman and Hall. New York, 1969. 28E. R. Fuller, Jr., “Fracture Mechanics Applied to Brittle Materials”; pp. 3-18 in ASTM Special Technical Publication No. 678. Edited by S. W. Frei￾man. American Society for Testing and Materials, Philadelphia, PA, 1979. 290. Sano, “A Revision of the Double Torsion Technique for Brittle Mate￾rials,” J. Mater. Sci., 23, 2505-11 (1988). %. G. Trantina, “Stress Analysis of Double Torsion Specimen,” J. Am. Ceram Soc., 60 [7-81 338-41 (1977). ”C. G. Annis and J. S. Cargill, Fracture Mechanics of Ceramics; pp. 737- 44. Edited by R. C. Bradt. D. P. H. Hasselman, and F. F. Lange. Plenum Press, New York, 1973. 3zP. S. Leevers. “Crack Front Shape Effects in the Double Torsion Test,” J. Mater. Sci., 17 [9] 2469-80 (1982). 33R. B. Tait, P. R. Fry, and G. G. Garrett, “Review and Evaluation of the Double Torsion Technique for Fracture Toughness and Fatigue Testing of Brittle Materials,” Exp. Mech. 14-22 [March] 1987. ”D. K. Shetty and A. V. Virkar. “Determination of Useful Range of Crack Lengths in Double Torsion Specimens,’’ J. Am. Ceram. SOC., 61 [l-21 93-94 (1978). 35J. B. Schutz, “Test Methods and Analysis for Glass-Ceramic Matrix Com￾posites (Ceramic Matrix Composites)”; Ph.D. Thesis. Massachusetts Institute of Technology, Cambridge, MA, 1991. 36D. A. W. Kaute, H. R. Shercliff, and M. F. Ashby, “Delamination. Fiber Bridging and Toughness of Ceramic Matrix Composites,’’ Acta Metall. Mater., 41 [71 1959-70 (1993). 37D. A. W. Kaute, H. R. Shercliff, and M. F. Ashby, “Modelling of Fiber Bridging and Toughness of Ceramic Matrix Composites,’’ Scr. Metall. Mater., 32 [7] 1055-60 (1995). 38A. G. Evans and F. W. Zok, “The Physics and Mechanics of Fiber￾Reinforced Brittle Matrix Composites,” J. Marer. Sci., 29, 3857-96 (1994). 39S. M. Lee, “Correlation Between Resin Material Variables and Transverse Cracking in Composites,” J. Muter. Sci., 19 [7] 2278-88 (1984). ‘“‘I. F. Mandell, D. H. Grande, T. H. Tsaing, and F. I. McGany, “Modified Microdebonding Test for Direct In Situ Fiberhlatrix Bond Strength Determi￾nation in Fiber Composites”; pp. 87-108 in ASTM Special Technical Publica￾tion No. 893. American Society for Testing and Materials, Philadelphia, PA, 1986. 41D. H. Grande, J. F. Mandell, and K. C. C. Hong, “Fiber-Matrix Bond Strength Studies of Glass, Ceramic, and Metal Matrix Composites,” J. Marer. Sci., 23, 311-28 (1988). “R. Kahraman, “Influence of Fiber-Matrix Interphase on High Temperature Behavior of Glass-Ceramic Matrix Composites”; Ph.D. Thesis. Montana State University, Bozeman. MT, 1993. 43J. F. Shackelford, Introduction to Materials Science for Engineers. Mac￾millan, New York, 1988. 44H. Scholze, Glass: Nature. Structure, and Properties. Springer-Verlag, New York, 1991. 45Corning Inc., private communication to Dr. J. F. Mandell, 1992. %3. M. Spearing, F. W. Zok, and A. G. Evans, “Stress Corrosion Cracking in a Unidirectional Ceramic Matrix Composite,’’ J. Am. Ceram. Soc.. 77 121 562- 70 (1994). 0
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有