正在加载图片...
赵凯等:搅拌摩擦加工F钢的组织性能 ·1579* 成应力集中,当应力达到某一临界值后微孔便会在位 长,微孔钝化,微孔间的材料以内颈缩的方式断裂网, 错塞积处形核和长大,这是裂纹扩展的起源点,随着塑 从而使搅拌摩擦加工后材料的强度较母材升高,但塑 性变形的继续,微孔间金属继续变形,材料被局部拉 性却有所降低. (e) 图6拉伸断口扫描电镜照片.(a)母材:(b)细晶层:(a)过渡层 Fig.6 SEM images of tensile fracture:(a)base metal:(b)FSPed IF steel with a surface fine-grained layer:(c)FSPed IF steel without any sur- face fine-grained layer grained metals.Mater Sci Eng A,1997,234 (97):59 3结论 [5]Du Y X,Zhang X M.Severe plastic deformation methods for ul- (1)采用氩气保护干冰乙醇强制冷却技术成功实 tra-ine grained materials.Mater Rer,2006,20(Suppl 2):241 (杜予晅,张新明。强变形制备超细品金属材料的方法.材料 现对F钢的搅拌摩擦加工,在横截面形成盆状的加工 导报,2006,20(增刊2):241) 区域,加工后组织显著细化,平均晶粒尺寸从45um细 6 Mishra R S,Ma Z Y.Friction stir welding and processing.Mater 化为5~10um,并在表面形成约60μm厚的细晶层,晶 Sci Eng R,2005,50(12):1 粒尺寸最小在1m以下. [7]Kumar N,Mishra R S,Huskamp C S,et al.Microstructure and (2)搅拌摩擦加工后显微硬度显著提高,并沿厚 mechanical behavior of friction stir processed ultrafine grained Al- 度方向呈梯度分布,加工中心的平均显微硬度约为 Mg-Se alloy.Mater Sci Eng A,2011,528(18):5883 HV135.6,是母材硬度的1.4倍,表面细晶层硬度最高 8] Hofmann D C,Vecchio K S.Submerged friction stir processing (SFSP):an improved method for creating ultra-fine-grained bulk 可达到HV312.8.细晶层和过渡层的抗拉强度分别 materials.Mater Sci Eng A,2005,402(12):234 为474.2和463.2MPa,比母材分别提高50.9%和 9]Rhodes C G.Mahoney M W,Bingel W H,et al.Fine-grain evo- 47.6%,加工后材料的延伸率相比母材均有所降低. lution in friction-stir processed 7050 aluminum.Scripta Mater, 晶粒细化是搅拌摩擦加工后材料抗拉强度提高的主要 2003,48(10):1451 原因. [10]Chang C L,Du X H,Huang J C.Achieving ultrafine grain size (3)搅拌摩擦加工前后试样的拉伸断口均呈微孔 in Mg-Al-Zn alloy by friction stir processing.Scripta Mater, 2007,57(3):209 聚合韧性断裂特征,但搅拌摩擦加工试样拉伸断口的 [11]Chang C L,Du X H,Huang J C.Producing nanograined micro- 韧窝比母材的更细更浅,其中细晶层试样断口的韧窝 structure in Mg-Al-Zn alloy by two-step friction stir processing. 细化更为明显 Scripta Mater,2008,59(3):356 参考文献 [12]Su J Q,Nelson T W,Sterling C J.Friction stir processing of largetrea bulk UFG aluminum alloys.Scripta Mater,2005,52 Wong Y Q.Fundamental project on new generation of iron and (2):135 steel materials.China Basic Sci,2000(1):15 03] Su J Q,Nelson T W,MeNelley T R,et al.Development of (翁宇庆.新一代钢铁材料的重大基础研究.中国基础科学, nanocrystalline structure in Cu during friction stir processing 2000(1):15) (FSP).Mater Sci Eng A,2011,528(16-17)5458 2] Li S H,Li J.Progress in research of high strength IF steel for au- [14]Xue P.Xiao B L,Wang W G,et al.Achieving ultrafine dual- tomotive applications.Shanghai Met,2007,29(5):66 phase structure with superior mechanical property in friction stir (李守华,李俊.汽车用高强度F钢的研究进展.上海金属, processed plain low carbon steel.Mater Sci Eng A,2013, 2007,29(5):66) 575(28):30 B]Song R,Ponge D,Raabe D,et al.Overview of processing,mi- 05]Ueji R,Fujii H,Cui L,et al.Friction stir welding of ultrafine crostructure and mechanical properties of ultrafine grained bec grained plain low-carbon steel formed by the martensite process steels.Mater Sci Eng A,2006,441 (12):1 Mater Sci Eng A,2006,423(1-2):324 [4]Valiev R Z.Structure and mechanical properties of ultrafine- 6]Mehranfar M,Dehghani K.Producing nanostructured superaus-赵 凯等: 搅拌摩擦加工 IF 钢的组织性能 成应力集中,当应力达到某一临界值后微孔便会在位 错塞积处形核和长大,这是裂纹扩展的起源点,随着塑 性变形的继续,微孔间金属继续变形,材料被局部拉 长,微孔钝化,微孔间的材料以内颈缩的方式断裂[26], 从而使搅拌摩擦加工后材料的强度较母材升高,但塑 性却有所降低. 图 6 拉伸断口扫描电镜照片 . ( a) 母材; ( b) 细晶层; ( a) 过渡层 Fig. 6 SEM images of tensile fracture: ( a) base metal; ( b) FSPed IF steel with a surface fine-grained layer; ( c) FSPed IF steel without any sur￾face fine-grained layer 3 结论 ( 1) 采用氩气保护干冰乙醇强制冷却技术成功实 现对 IF 钢的搅拌摩擦加工,在横截面形成盆状的加工 区域,加工后组织显著细化,平均晶粒尺寸从 45 μm 细 化为 5 ~ 10 μm,并在表面形成约 60 μm 厚的细晶层,晶 粒尺寸最小在 1 μm 以下. ( 2) 搅拌摩擦加工后显微硬度显著提高,并沿厚 度方向呈梯度分布,加工中心的平均显微硬度约为 HV 135. 6,是母材硬度的 1. 4 倍,表面细晶层硬度最高 可达到 HV 312. 8. 细晶层和过渡层的抗拉强度分别 为 474. 2 和 463. 2 MPa,比 母 材 分 别 提 高 50. 9% 和 47. 6% ,加工后材料的延伸率相比母材均有所降低. 晶粒细化是搅拌摩擦加工后材料抗拉强度提高的主要 原因. ( 3) 搅拌摩擦加工前后试样的拉伸断口均呈微孔 聚合韧性断裂特征,但搅拌摩擦加工试样拉伸断口的 韧窝比母材的更细更浅,其中细晶层试样断口的韧窝 细化更为明显. 参 考 文 献 [1] Wong Y Q. Fundamental project on new generation of iron and steel materials. China Basic Sci,2000( 1) : 15 ( 翁宇庆. 新一代钢铁材料的重大基础研究. 中国基础科学, 2000( 1) : 15) [2] Li S H,Li J. Progress in research of high strength IF steel for au￾tomotive applications. Shanghai Met,2007,29( 5) : 66 ( 李守华,李俊. 汽车用高强度 IF 钢的研究进展. 上海金属, 2007,29( 5) : 66) [3] Song R,Ponge D,Raabe D,et al. Overview of processing,mi￾crostructure and mechanical properties of ultrafine grained bcc steels. Mater Sci Eng A,2006,441( 1-2) : 1 [4] Valiev R Z. Structure and mechanical properties of ultrafine￾grained metals. Mater Sci Eng A,1997,234( 97) : 59 [5] Du Y X,Zhang X M. Severe plastic deformation methods for ul￾tra-fine grained materials. Mater Rev,2006,20( Suppl 2) : 241 ( 杜予晅,张新明. 强变形制备超细晶金属材料的方法. 材料 导报,2006,20( 增刊 2) : 241) [6] Mishra R S,Ma Z Y. Friction stir welding and processing. Mater Sci Eng R,2005,50( 1-2) : 1 [7] Kumar N,Mishra R S,Huskamp C S,et al. Microstructure and mechanical behavior of friction stir processed ultrafine grained Al￾Mg-Sc alloy. Mater Sci Eng A,2011,528( 18) : 5883 [8] Hofmann D C,Vecchio K S. Submerged friction stir processing ( SFSP) : an improved method for creating ultra-fine-grained bulk materials. Mater Sci Eng A,2005,402( 1-2) : 234 [9] Rhodes C G,Mahoney M W,Bingel W H,et al. Fine-grain evo￾lution in friction-stir processed 7050 aluminum. Scripta Mater, 2003,48( 10) : 1451 [10] Chang C L,Du X H,Huang J C. Achieving ultrafine grain size in Mg--Al--Zn alloy by friction stir processing. Scripta Mater, 2007,57( 3) : 209 [11] Chang C L,Du X H,Huang J C. Producing nanograined micro￾structure in Mg--Al--Zn alloy by two-step friction stir processing. Scripta Mater,2008,59( 3) : 356 [12] Su J Q,Nelson T W,Sterling C J. Friction stir processing of large-area bulk UFG aluminum alloys. Scripta Mater,2005,52 ( 2) : 135 [13] Su J Q,Nelson T W,McNelley T R,et al. Development of nanocrystalline structure in Cu during friction stir processing ( FSP) . Mater Sci Eng A,2011,528( 16--17) : 5458 [14] Xue P,Xiao B L,Wang W G,et al. Achieving ultrafine dual￾phase structure with superior mechanical property in friction stir processed plain low carbon steel. Mater Sci Eng A,2013, 575( 28) : 30 [15] Ueji R,Fujii H,Cui L,et al. Friction stir welding of ultrafine grained plain low-carbon steel formed by the martensite process. Mater Sci Eng A,2006,423( 1--2) : 324 [16] Mehranfar M,Dehghani K. Producing nanostructured super-aus- · 9751 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有