正在加载图片...
工程科学学报,第44卷,第X期 storage materials.J Plys Chem C,2016,120(38):21915 [28]Yan XX,Feng Y H,Qiu L,et al.Thermal conductivity and phase [14]Zou HY,Feng Y H,Qiu L,et al.Effect of the loading amount and change characteristics of hierarchical porous diamond/erythritol arrangement of iodine chains on the interfacial thermal transport of composite phase change materials.Energy,2021,233:121158 carbon nanotubes:A molecular dynamics study.RSC Adv,2020. [29]Hohlein S,Konig-Haagen A,Bruggemann D.Thermophysical 10(72):44196 characterization of MgCl,6H,O,xylitol and erythritol as phase [15]Ikeshoji T,Hafskjold B.Non-equilibrium molecular dynamics change materials (PCM)for latent heat thermal energy storage calculation of heat conduction in liquid and through liquid-gas (LHTES).Materials,2017,10(4):444 interface.Mol Phys,1994,81(2):251 [30]Chai Y,Xiao Z Y,Chan P C H.Horizontally aligned carbon [16]Jund P,Jullien R.Molecular-dynamics calculation of the thermal nanotube bundles for interconnect application:Diameter- conductivity of vitreous silica.Phrys Rev B,1999,59(21):13707 dependent contact resistance and mean free path.Nanotechnology, [17]Muller-Plathe F.A simple nonequilibrium molecular dynamics 2010,21(23):235705 method for calculating the thermal conductivity.J Chem Plnys [31]Yu C,Shi L,Yao Z,et al.Thermal conductance and thermopowe 1997,106(14):6082 of an individual single-wall carbon nanotube.Nano Lett,2005. [18]Zhang Q,Luo Z L.Guo QL.et al.Preparation and thermal 5(9):1842 properties of short carbon fibers/erythritol phase change materials. [32]Saaskilahti K,Oksanen J,Volz S,et al.Frequency-dependent Energy Convers Manag,2017,136:220 phonon mean free path in carbon nanotubes from nonequilibrium [19]Shimada A.Crystal and molecular structure of mesoerythritol. molecular dynamics.Phys Rev B,2015,91(11):115426 4 cta Cryst,1958,11(10:748 [33]Wang J,Li C,Li J,et al.A multiscale study of the filler-size and [20]Plimpton S.Fast parallel algorithms for short-range molecular temperature dependence of the thermal conductivity of graphene- dynamics.J Comput Phys,1995,117(1):1 polymer nanocomposites.Carbon,2021,175:259 [21]Stukowski A.Visualization and analysis of atomistic simulation [34]Bae M H,Li Z Y,Aksamija Z,et al.Ballistic to diffusive data with OVITO-the open visualization tool.Modelling Simul crossover of heat flow in graphene ribbons.Nat Commun,2013,4: Mater Sci Eng,2010,18(1:015012 1734 [22]Schmid N,Eichenberger A P.Choutko A,et al.Definition and [35]Qiu L,Zhang X H,Guo Z X,et al.Interfacial heat transport in testing of the GROMOS force-field versions 54A7 and 54B7.Eu nano-carbon assemblies.Carbon,2021,178:391 Biophys,J2011,40(7):843 [23]Tersoff J.New empirical approach for the structure and energy of [36]Feng D L,Feng Y H,Liu Y Z,et al.Thermal conductivity of a 2D covalent systems.Phys Rev B,1988,37(12):6991 covalent organic framework and its enhancement using fullerene [24]Qiu L,Zhu N,Feng Y H,et al.Interfacial thermal transport 3D self-assembly:A molecular dynamics simulation.Plys Chem properties of polyurethane/carbon nanotube hybrid composites.In C,2020,124(15):8386 J Heat Mass Transf,2020,152:119565 [37]Yousefi F,Khoeini F,Rajabpour A.Thermal conductivity and [25]Hu Y,Feng T L,Gu X K,et al.Unification of nonequilibrium thermal rectification of nanoporous graphene:A molecular molecular dynamics and the mode-resolved phonon Boltzmann dynamics simulation.Int J Heat Mass Transf,2020,146:118884 equation for thermal transport simulations.Phys Rev B,2020, [38]Yu Z P,Feng Y H,Feng D L,et al.Thermal conductance 101(15):155308 bottleneck of a three dimensional graphene-CNT hybrid structure: [26]LiZ,Xiong S Y,Sievers C,et al.Influence of thermostatting on A molecular dynamics simulation.Phys Chem Chem Phys,2019, nonequilibrium molecular dynamics simulations of heat 22(1):337 conduction in solids.JChem Phys,2019,151(23):234105 [39]Zhao C Y,Tao Y B,Yu Y S.Molecular dynamics simulation of [27]Feng B.Fan L W.Zeng Y,et al.Atomistic insights into the effects thermal and phonon transport characteristics of nanocomposite of hydrogen bonds on the melting process and heat conduction of phase change material.JMol Lig,2021,329:115448 erythritol as a promising latent heat storage material.IntJ Therm [40]Dickey J M,Paskin A.Computer simulation of the lattice Sci,2019,146:106103 dynamics of solids.Phys Rev,1969,188(3):1407storage materials. J Phys Chem C, 2016, 120(38): 21915 Zou H Y, Feng Y H, Qiu L, et al. Effect of the loading amount and arrangement of iodine chains on the interfacial thermal transport of carbon  nanotubes:  A  molecular  dynamics  study. RSC Adv,  2020, 10(72): 44196 [14] Ikeshoji  T,  Hafskjold  B.  Non-equilibrium  molecular  dynamics calculation  of  heat  conduction  in  liquid  and  through  liquid-gas interface. Mol Phys, 1994, 81(2): 251 [15] Jund P, Jullien R. Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys Rev B, 1999, 59(21): 13707 [16] Müller-Plathe  F.  A  simple  nonequilibrium  molecular  dynamics method  for  calculating  the  thermal  conductivity. J Chem Phys, 1997, 106(14): 6082 [17] Zhang  Q,  Luo  Z  L,  Guo  Q  L,  et  al.  Preparation  and  thermal properties of short carbon fibers/erythritol phase change materials. Energy Convers Manag, 2017, 136: 220 [18] Shimada  A.  Crystal  and  molecular  structure  of  mesoerythritol. Acta Cryst, 1958, 11(10): 748 [19] Plimpton  S.  Fast  parallel  algorithms  for  short-range  molecular dynamics. J Comput Phys, 1995, 117(1): 1 [20] Stukowski  A.  Visualization  and  analysis  of  atomistic  simulation data  with  OVITO–the  open  visualization  tool. Modelling Simul Mater Sci Eng, 2010, 18(1): 015012 [21] Schmid  N,  Eichenberger  A  P,  Choutko  A,  et  al.  Definition  and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J, 2011, 40(7): 843 [22] Tersoff J. New empirical approach for the structure and energy of covalent systems. Phys Rev B, 1988, 37(12): 6991 [23] Qiu  L,  Zhu  N,  Feng  Y  H,  et  al.  Interfacial  thermal  transport properties of polyurethane/carbon nanotube hybrid composites. Int J Heat Mass Transf, 2020, 152: 119565 [24] Hu  Y,  Feng  T  L,  Gu  X  K,  et  al.  Unification  of  nonequilibrium molecular  dynamics  and  the  mode-resolved  phonon  Boltzmann equation  for  thermal  transport  simulations. Phys Rev B,  2020, 101(15): 155308 [25] Li Z, Xiong S Y, Sievers C, et al. Influence of thermostatting on nonequilibrium  molecular  dynamics  simulations  of  heat conduction in solids. J Chem Phys, 2019, 151(23): 234105 [26] Feng B, Fan L W, Zeng Y, et al. Atomistic insights into the effects of hydrogen bonds on the melting process and heat conduction of erythritol as a promising latent heat storage material. Int J Therm Sci, 2019, 146: 106103 [27] Yan X X, Feng Y H, Qiu L, et al. Thermal conductivity and phase change  characteristics  of  hierarchical  porous  diamond/erythritol composite phase change materials. Energy, 2021, 233: 121158 [28] Höhlein  S,  König-Haagen  A,  Brüggemann  D.  Thermophysical characterization  of  MgCl2 ·6H2O,  xylitol  and  erythritol  as  phase change  materials  (PCM)  for  latent  heat  thermal  energy  storage (LHTES). Materials, 2017, 10(4): 444 [29] Chai  Y,  Xiao  Z  Y,  Chan  P  C  H.  Horizontally  aligned  carbon nanotube  bundles  for  interconnect  application:  Diameter￾dependent contact resistance and mean free path. Nanotechnology, 2010, 21(23): 235705 [30] Yu C, Shi L, Yao Z, et al. Thermal conductance and thermopower of  an  individual  single-wall  carbon  nanotube. Nano Lett,  2005, 5(9): 1842 [31] Sääskilahti  K,  Oksanen  J,  Volz  S,  et  al.  Frequency-dependent phonon mean free path in carbon nanotubes from nonequilibrium molecular dynamics. Phys Rev B, 2015, 91(11): 115426 [32] Wang J, Li C, Li J, et al. A multiscale study of the filler-size and temperature dependence of the thermal conductivity of graphene￾polymer nanocomposites. Carbon, 2021, 175: 259 [33] Bae  M  H,  Li  Z  Y,  Aksamija  Z,  et  al.  Ballistic  to  diffusive crossover of heat flow in graphene ribbons. Nat Commun, 2013, 4: 1734 [34] Qiu  L,  Zhang  X  H,  Guo  Z  X,  et  al.  Interfacial  heat  transport  in nano-carbon assemblies. Carbon, 2021, 178: 391 [35] Feng D L, Feng Y H, Liu Y Z, et al. Thermal conductivity of a 2D covalent  organic  framework  and  its  enhancement  using  fullerene 3D self-assembly: A molecular dynamics simulation. J Phys Chem C, 2020, 124(15): 8386 [36] Yousefi  F,  Khoeini  F,  Rajabpour  A.  Thermal  conductivity  and thermal  rectification  of  nanoporous  graphene:  A  molecular dynamics simulation. Int J Heat Mass Transf, 2020, 146: 118884 [37] Yu  Z  P,  Feng  Y  H,  Feng  D  L,  et  al.  Thermal  conductance bottleneck of a three dimensional graphene–CNT hybrid structure: A molecular dynamics simulation. Phys Chem Chem Phys, 2019, 22(1): 337 [38] Zhao C Y, Tao Y B, Yu Y S. Molecular dynamics simulation of thermal  and  phonon  transport  characteristics  of  nanocomposite phase change material. J Mol Liq, 2021, 329: 115448 [39] Dickey  J  M,  Paskin  A.  Computer  simulation  of  the  lattice dynamics of solids. Phys Rev, 1969, 188(3): 1407 [40] · 8 · 工程科学学报,第 44 卷,第 X 期
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有