556 复旦学报(自然科学版) 第52卷 由此可将此类介质的几何形态模型化为三维 Euclid空间中的光滑曲面,亦即二维 Riemann光滑流形.按 微分几何的观点, Euclid流形(平坦空间)同 Riemann流形(弯曲空间)在几何性质上有本质区别,对此在 场论上亦有显著差异.按现有理论,几何形态为曲面的连续介质其守恒律控制方程就直接体现为曲面几何 量同物理量之间的耦合作用.就此理论,我们发展了固定曲面上二维不可压缩流动的流函数-涡量解法,并 进行了固定曲面上圆柱绕流以及内流的数值研究;给出了海面上油污扩散的 Lagrange型控制方程及其数 值研究 本文所述有限变形理论的相关思想及方法的适用性及有效性需待更为广泛的数值实验及真实实验的 检验 参考文献: [1] Triantafyllou M S, Triantafyllou G S, Yue D K P. Hydrodynamics of fishlike swimming[J]. Annu Rev [2] Fish F E, Lauder G V. Passive and active flow control by swimming fishes and mammals[J]. Annu Rev Fluid mech,2006,38:193-224. [3] WuC. Wang L. Adaptive optimal control of the flapping rule of a fixed flapping plate[J]. Advances in Applied Mathematics and Mechanics, 2009, 1(3): 402-414 [4] LuX Y, Yin X Z, Yang J M, et al. Studies of hydrodynamics in fishlike swimming propulsion[J] [5] WuCJ, Wang L. Numerical simulations of self-propelled swimming of 3D bionic fish school[J]. Science [6] WuC J. Wang L. Where is the rudder of a fish?-The mechanism of swimming and control of self- propelled fish school[J]. Acta Mechanica Sinica, 2010, 26(1):45-65. [7] Dong G J, Lu X Y. Characteristics of flow over traveling wavy foils in a side-by-side arrangement[J] Physics of Fluids, 2007, 19: 057107 [8] Williamson C H K. Evolution of a single wake behind a pair of bluff bodies[J]. J Fluid Mech, 1985, 159: 1-18 [9] Govardhan R, Williamson C K. Modes of vortex formation and frequency response of a freely vibrating ylinder[J]. J Fluid Mech, 2000,420(1):85-130 [10] Du G, Sum M. Effects of unsteady deformation of flapping wing on its aerodynamics forces[J]. Applied Mathematics and Mechanics, 2008, 29(6):731-743. [11] Lu X Y, Yin XZ. Propulsive performance of a fishlike traveling wavy wall[J]. Acta Mechanica, 2005 175(1-4):197-215 [12] WuCJ, Xie Y Q, Wu J Z "Fluid roller bearing"effect and flow control[J]. Acta Mechanica Sinca 03,19(5):476-484. [13] Wu CJ, Wang L, Wu J Z. Suppression of the von Karman vortex street behind a circular cylinder by a travelling wave generated by a flexible surface[J]. J Fluid Mech,2007,574:365-391 [14]力学情报.动力叶轮机械气动力学专集[M].北京:中国科学院北京力学研究所,197 [15]李开泰,黄艾香.张量分析及其应用[M].北京:科学出版社,2004 [16]谢锡麟.现代张量分析在连续介质力学中的若干应用[C]∥吴有生,周如苹,颜开,等,第十一届全国水 动力学学术会议暨第二十四届全国水动力学研讨会并周培源教授诞辰110周年纪念大会文集,北京:海 洋出版社,2012:224-236 [17]郭仲衡,非线性弹性理论[M].北京:科学出版社,1980 [18] Xie X L, Chen Y, Shi Q. Some studies on mechanics of continuous mediums viewed as differential manifolds[J]. Sci China-Phys Mech Astron, 2013, 56(2):432-456 [19]陈瑜,谢锡麟,麻伟巍,二维类圆柱边界的有限变形运动对其尾迹空间动力学行为的影响[C]∥吴有 生,周如苹,颜开,等.第十一届全国水动力学学术会议暨第二十四届全国水动力学研讨会并周培源教 授诞辰110周年纪念大会文集.北京:海洋出版社,2012:212-223 [20] Boffetta G, Ecke R E. Two-dimensional turbulence[J]. Ammu Rev Fluid Mech,2012,44:427-451 C1994-2013ChinaAcademicJOurnalElectronicPublishingHouse.Allrightsreservedhttp://www.cnki.net由此可将此类介质的几何形态模型化为三维 Euclid空间中的光滑曲面,亦即二维 Riemann光滑流形.按 微分几何的观点,Euclid流形(平坦空间)同 Riemann流形(弯曲空间)在几何性质上有本质区别,对此在 场论上亦有显著差异.按现有理论,几何形态为曲面的连续介质其守恒律控制方程就直接体现为曲面几何 量同物理量之间的耦合作用.就此理论,我们发展了固定曲面上二维不可压缩流动的流函数 涡量解法,并 进行了固定曲面上圆柱绕流以及内流的数值研究;给出了海面上油污扩散的 Lagrange型控制方程及其数 值研究. 本文所述有限变形理论的相关思想及方法的适用性及有效性需待更为广泛的数值实验及真实实验的 检验. 参考文献: [1] TriantafyllouMS,TriantafyllouGS,YueD KP.Hydrodynamicsoffishlikeswimming[J].AnnuRev FluidMech,2000,32:33-53. [2] FishFE,LauderGV.Passiveandactiveflowcontrolbyswimmingfishesandmammals[J].AnnuRev FluidMech,2006,38:193-224. [3] WuCJ,WangL.Adaptiveoptimalcontroloftheflappingruleofafixedflappingplate[J].Advancesin AppliedMathematicsandMechanics,2009,1(3):402-414. [4] LuX Y,YinX Z,YangJ M,etal.Studiesofhydrodynamicsinfishlikeswimmingpropulsion[J]. Journalof Hydrodynamics,2010,22(5):12-22. [5] WuCJ,WangL.Numericalsimulationsofself-propelledswimmingof3Dbionicfishschool[J].Science inChina(E),2009,52(3):658-669. [6] WuCJ,WangL.Whereistherudderofafish?-The mechanism ofswimmingandcontrolofself- propelledfishschool[J].ActaMechanicaSinica,2010,26(1):45-65. [7] DongGJ,LuX Y.Characteristicsofflowovertravelingwavyfoilsinaside-by-sidearrangement[J]. PhysicsofFluids,2007,19:057107. [8] WilliamsonCHK.Evolutionofasinglewakebehindapairofbluffbodies[J].JFluidMech,1985,159:1-18. [9] GovardhanR,WilliamsonC H K.Modesofvortexformationandfrequencyresponseofafreelyvibrating cylinder[J].JFluidMech,2000,420(1):85-130. [10] DuG,Sum M.Effectsofunsteadydeformationofflappingwingonitsaerodynamicsforces[J].Applied MathematicsandMechanics,2008,29(6):731-743. [11] LuXY,YinXZ.Propulsiveperformanceofafish-liketravelingwavywall[J].ActaMechanica,2005, 175(1-4):197-215. [12] WuCJ,XieY Q,WuJZ.“Fluidrollerbearing”effectandflowcontrol[J].ActaMechanicaSinca, 2003,19(5):476-484. [13] WuCJ,WangL,WuJZ.SuppressionofthevonKarmanvortexstreetbehindacircularcylinderbya travellingwavegeneratedbyaflexiblesurface[J].JFluidMech,2007,574:365-391. [14] 力学情报.动力叶轮机械气动力学专集[M].北京:中国科学院北京力学研究所,1976. [15] 李开泰,黄艾香.张量分析及其应用[M].北京:科学出版社,2004. [16] 谢锡麟.现代张量分析在连续介质力学中的若干应用[C]∥吴有生,周如苹,颜 开,等.第十一届全国水 动力学学术会议暨第二十四届全国水动力学研讨会并周培源教授诞辰110周年纪念大会文集.北京:海 洋出版社,2012:224-236. [17] 郭仲衡.非线性弹性理论[M].北京:科学出版社,1980. [18] XieX L,Chen Y,ShiQ.Somestudieson mechanicsofcontinuous mediumsviewedasdifferential manifolds[J].SciChina-PhysMechAstron,2013,56(2):432-456. [19] 陈 瑜,谢锡麟,麻伟巍.二维类圆柱边界的有限变形运动对其尾迹空间动力学行为的影 响[C]∥吴 有 生,周如苹,颜 开,等.第十一届全国水动力学学术会议暨第二十四届全国水动力学研讨会并周培源教 授诞辰110周年纪念大会文集.北京:海洋出版社,2012:212-223. [20] BoffettaG,EckeRE.Two-dimensionalturbulence[J].AnnuRevFluidMech,2012,44:427-451. 655 复 旦 学 报(自然科学版) 第52卷