正在加载图片...
J. P. Hirth et al. 1 Acta Materialia 54(2006)1917-1925 10 um Fig 9. Optical photomicrograph(1000x) of twinned a' platelets in a Pu-1.7 at. %Ga alloy Table 2 ossible burgers vectors in order of increasing magnitude and sponding observed slip planes from Fig. 11 [10] (A Observed slip planes 010] (100,(001),(102),(101) (213) (323 7.7 (001),(111),(112),(114),(118) 1114 (213 (010) 120 1114 (213) [ l121 (010) [011 (100).(411) (100),(111) 13 (415) [120 14.20 (101),(213),(323) 14. (101),(213) (001) Table 3 Fig. 10. [010]stereographic projection of slip plane poles in a. Observe ossible slip planes in order of decreasing d-spacing and corresponding slip planes are shown as poles with indices in parentheses and corre- sponding possible slip directions are shown as zones (large circles)with Slip plane d-spacing(A) Possible Burgers vectors indices in brackets. Intersection of a pole with a zone gives a slip system. (113).(113) [l0[10 (201) (004) [100010][103[10 otion of zonal dislocations, much like pyramidal slip in (203) [1003D001[ol[0 hcp metals [24]. For the present purposes, it is not neces (211),(2l1) 1l1lll1.[11 sary to know what the exact slip mechanism is. A likely (014),(014) 2.35 [100] slip plane for LID would be(323), and, statistically, a (114),(114) 10.[10] Burgers vector such as [101] inclined to the terrace plane ( 302) 2.0 [010]motion of zonal dislocations, much like pyramidal slip in hcp metals [24]. For the present purposes, it is not neces￾sary to know what the exact slip mechanism is. A likely slip plane for LID would be ð3 23Þ, and, statistically, a Burgers vector such as [1 0 1] inclined to the terrace plane Fig. 9. Optical photomicrograph (1000·) of twinned a0 platelets in a Pu–1.7 at.% Ga alloy. (001) (100) (010) [120] (2 13 ) (3 23 ) (4 11 ) (4 15) (213) (112) (1 02) (118) [1 10] (114 ) [1 10] [1 11 ] [1 20] [011] (101) (111) Fig. 10. [0 1 0] stereographic projection of slip plane poles in a0 . Observed slip planes are shown as poles with indices in parentheses and corre￾sponding possible slip directions are shown as zones (large circles) with indices in brackets. Intersection of a pole with a zone gives a slip system. Table 2 Possible Burgers vectors in order of increasing magnitude and corre￾sponding observed slip planes from Fig. 11 Possible b jbj (A˚ ) Observed slip planes [0 1 0] 4.63 (1 0 0), (0 0 1), ð102Þ, (1 0 1) [1 0 0] 6.20 (0 0 1), (0 1 0) [1 1 0] 7.74 (0 0 1) ½11 0 7.74 (0 0 1), (1 1 1), (1 1 2), ð1 14Þ, (1 1 8) [0 0 1] 10.70 (1 0 0), (0 1 0) [1 2 0] 11.14 ð2 13Þ ½120 11.14 (2 1 3) [1 0 1] 11.21 (0 1 0) [0 1 1] 11.66 (1 0 0), ð4 11Þ ½0 11 11.66 (1 0 0), (1 1 1) [1 1 1] 12.13 ½1 11 12.13 ð415Þ [2 1 0] 13.23 ½210 13.23 ½111 14.20 (1 0 1), ð2 13Þ, ð3 23Þ ½1 11 14.20 (1 0 1), (2 1 3) Table 3 Possible slip planes in order of decreasing d-spacing and corresponding Burgers vectors Slip plane d-spacing (A˚ ) Possible Burgers vectors ð113Þ, ð1 13Þ 2.78 [1 1 0], ½110 (2 0 1) 2.77 [0 1 0] (0 0 4) 2.69 [1 0 0], [0 1 0], [1 1 0], ½110 ð2 03Þ 2.59 [0 1 0] (0 2 0) 2.41 [1 0 0], [0 0 1], [1 0 1], ½101 ð2 11Þ, (2 1 1) 2.40 [0 1 1], ½1 11, ½01 1, ½111 (0 1 4), ð01 4Þ 2.35 [1 0 0] ð1 14Þ, ð114Þ 2.33 ½110, [1 1 0] ð3 02Þ 2.03 [0 1 0] J.P. Hirth et al. / Acta Materialia 54 (2006) 1917–1925 1923
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有