Spatial discretization Sample values at the mesh vertices f(t)=(f(v1,t),...,f(vn,t))T Discrete Laplace-Beltrami using either the uniform or cotangent formula. The evolution of the function value of each vertex: of(vi, Ot 2=△f(x,t) Matrix form: of(t) at =入·Lf(t) Spatial discretization • Sample values at the mesh vertices 𝒇(𝑡) = 𝑓 𝑣1,𝑡 , … , 𝑓 𝑣𝑛,𝑡 𝑇 • Discrete Laplace-Beltrami using either the uniform or cotangent formula. • The evolution of the function value of each vertex: 𝜕𝑓 𝑣𝑖 ,𝑡 𝜕𝑡 = 𝜆∆𝑓(𝒙𝑖 ,𝑡) Matrix form: 𝜕𝒇 𝑡 𝜕𝑡 = 𝜆 ∙ 𝐿𝒇(𝑡)