正在加载图片...
propem an the basis of experimental results, therefore, one is led to assert the existence of two new similar way, a further remarkable relationship between heat and temperature will be established, and a new property, the entropy, defined. Although this is a much less familiar property, it is to be stressed that the general approach is quite like that used to establish the Zeroth and First Laws. A Viewed in this way, the entropy should appear no more mystical than the internal energy. sults increase of entropy in a naturally occurring process is no less real than the conservation of energy Giv. Second Law Although all natural processes must take place in accordance with the First Law, the principle of conservation of energy is, by itself, inadequate for an unambiguous description of the behavior of a system. Specifically, there is no mention of the familiar observation that every natural process has in some sense a preferred direction of action. For example, the flow of heat occurs naturally from hotter to colder bodies, in the absence of other influences, but the reverse flow certainly is not in violation of the First Law. So far as that law is concerned, the initial and final states are symmetrical in a very important respect The Second Law is essentially different from the First Law; the two principles are dependent and cannot in any sense be deduced from one another. Thus, the concept of energy is not sufficient, and a new property must appear. This property can be developed, and the Second Law introduced, in much the same way as the Zeroth and First Laws were presented. By examination of certain observational results, one attempts to extract from experience a law which is supposed to be general; it is elevated to the position of a fundamental axiom to be proved or disproved by subsequent experiments. Within the structure of classical thermodynamics, there is no proof more fundamental than observations. A statement which can be adopted as the Second law of thermodynamics Second law There exists for every thermodynamic system in equilibrium an extensive scalar property called the entropy S, such that in an infinitesimal reversible change of state of the system, ds=doT, where T is the absolute temperature and d@ is the amount of heat received by the system. The entropy of a thermally insulated system cannot decrease and is constant if and only if all processes are reversible As with the Zeroth and First Laws, the existence of a new property is asserted and its behavior is described (v. Reversible Processes we can recall the definition, a process is called completely reversible if, after the process has ' and In the course of this development, the idea of a completely reversible process is central occurred, both the system and its surroundings can be wholly restored by any means to their respective initial states". Especially, it is to be noted that the definition does not in this form, specify that the reverse path must be identical with the forward path. If the initial states can be restored by any means whatever, the process is by definition completely reversible. If the paths are identical, then one usually calls the process (of the system) reversible, or one may say that the state of the system follows a reversible path. In this path(between two equilibrium states I and 2) (i) the system passes through the path followed by the equilibrium states only, and (ii) the system will take the reversed path 2 to l by a simple reversal of the work done and heat added reversible processes are idealizations not actually encountered. However, they are clearly 1B-4On the basis of experimental results, therefore, one is led to assert the existence of two new properties, the temperature and internal energy, which do not arise in ordinary mechanics. In a similar way, a further remarkable relationship between heat and temperature will be established, and a new property, the entropy, defined. Although this is a much less familiar property, it is to be stressed that the general approach is quite like that used to establish the Zeroth and First Laws. A general principle and a property associated with any system are extracted from experimental results. Viewed in this way, the entropy should appear no more mystical than the internal energy. The increase of entropy in a naturally occurring process is no less real than the conservation of energy. (iv.) Second Law Although all natural processes must take place in accordance with the First Law, the principle of conservation of energy is, by itself, inadequate for an unambiguous description of the behavior of a system. Specifically, there is no mention of the familiar observation that every natural process has in some sense a preferred direction of action. For example, the flow of heat occurs naturally from hotter to colder bodies, in the absence of other influences, but the reverse flow certainly is not in violation of the First Law. So far as that law is concerned, the initial and final states are symmetrical in a very important respect. The Second Law is essentially different from the First Law; the two principles are independent and cannot in any sense be deduced from one another. Thus, the concept of energy is not sufficient, and a new property must appear. This property can be developed, and the Second Law introduced, in much the same way as the Zeroth and First Laws were presented. By examination of certain observational results, one attempts to extract from experience a law which is supposed to be general; it is elevated to the position of a fundamental axiom to be proved or disproved by subsequent experiments. Within the structure of classical thermodynamics, there is no proof more fundamental than observations. A statement which can be adopted as the Second Law of thermodynamics is: Second Law There exists for every thermodynamic system in equilibrium an extensive scalar property called the entropy, S, such that in an infinitesimal reversible change of state of the system, dS = dQ/T, where T is the absolute temperature and dQ is the amount of heat received by the system. The entropy of a thermally insulated system cannot decrease and is constant if and only if all processes are reversible. As with the Zeroth and First Laws, the existence of a new property is asserted and its behavior is described. (v.) Reversible Processes In the course of this development, the idea of a completely reversible process is central, and we can recall the definition, “a process is called completely reversible if, after the process has occurred, both the system and its surroundings can be wholly restored by any means to their respective initial states”. Especially, it is to be noted that the definition does not, in this form, specify that the reverse path must be identical with the forward path. If the initial states can be restored by any means whatever, the process is by definition completely reversible. If the paths are identical, then one usually calls the process (of the system) reversible, or one may say that the state of the system follows a reversible path. In this path (between two equilibrium states 1 and 2), (i) the system passes through the path followed by the equilibrium states only, and (ii) the system will take the reversed path 2 to 1 by a simple reversal of the work done and heat added. Reversible processes are idealizations not actually encountered. However, they are clearly 1B-4
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有