点击切换搜索课件文库搜索结果(4812)
文档格式:PPT 文档大小:533KB 文档页数:19
一、直和的定义 二、直和的判定 三、多个子空间的直和
文档格式:PPT 文档大小:979.5KB 文档页数:28
一、 不变子空间的概念 二、 线性变换在不变子空间上的限制 三、 不变子空间与线性变换的矩阵化简 四、 线性空间的直和分解
文档格式:PPT 文档大小:570.5KB 文档页数:27
一、可对角化的概念 二、几个引理 四、对角化的一般方法 三、可对角化的条件
文档格式:PPT 文档大小:335.5KB 文档页数:21
一、若当块的初等因子 二、若当形矩阵的初等因子 三、若当标准形存在定理
文档格式:DOC 文档大小:73KB 文档页数:1
定义10设v1,V2是欧氏空间V中两个子空间如果对于任意的a∈V1,BEV2 恒有 (a,B)=0 则称V,2为正交的,记为V1⊥V2一个向量,如果对于任意的B∈V,恒有 (a,B)=0
文档格式:DOC 文档大小:214KB 文档页数:4
由前一节的讨论,已经得到下面的两点性质: 1.辛空间(V,f)中一定能找到一组基E,E2,n-2n满足 f(n)=1,1≤i≤n, f()=0,-n≤i,jn,i+j≠0
文档格式:DOC 文档大小:160.5KB 文档页数:5
由第五章得到,任意一个对称矩阵都合同于一个对角矩阵,换句话说,都有 一个可逆矩阵C使CAC成对角形现在利用欧氏空间的理论,第五章中关于实对 称矩阵的结果可以加强这一节的主要结果是: 对于任意一个n级实对称矩阵A,都存在一个n级正交矩阵T
文档格式:DOC 文档大小:83KB 文档页数:2
定义9欧氏空间V的线性变换A叫做一个正交变换如果它保持向量的内积 不变,即对任意的,都有a,B∈V,都有 (Aa, AB)=(a, B)
文档格式:DOC 文档大小:108KB 文档页数:3
现在来证明,-矩阵的标准形是唯一的 定义5设λ-矩阵A(4)的秩为r,对于正整数k,1≤k≤r,A(4)中必有非 零的k级子式.A(4)中全部k级子式的首项系数为1的最大公因式D(4)称为 A(A)的k级行列式因子 由定义可知,对于秩为r的λ-矩阵,行列式因子一共有r个行列式因子的 意义就在于,它在初等变换下是不变的
文档格式:DOC 文档大小:54.5KB 文档页数:3
由前面的讨论可知,并不是对于每一个线性变换都有一组基,使它在这组基 下的矩阵成为对角形.下面先介绍一下,在适当选择的基下,一般的一个线性变 换能化简成什么形状
首页上页469470471472473474475476下页末页
热门关键字
搜索一下,找到相关课件或文库资源 4812 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有