点击切换搜索课件文库搜索结果(655)
文档格式:PPT 文档大小:275KB 文档页数:37
代理进程:维护其所驻留的被管设备的状态,并且 通过网络管理协议向NMS提供信息 网络管理系统收集被管设备的信息,并相应作出反 应
文档格式:PDF 文档大小:1.83MB 文档页数:7
针对地磁导航方向适配性分析时人工提取的特征主观性较强且难以表达深层的结构性特征的问题,提出一种基于深度卷积神经网络(convolutional neural network,CNN)的地磁导航方向适配性分析方法.首先,利用Gabor滤波器的方向选择特性建立了6个典型方向的适配特征图;然后,设计了卷积神经网络对深层次的方向适配特征进行提取,并通过混和粒子群算法(hybrid particle swarm optimization,HPSO)对卷积神经网络的训练参数进行优选;最后,通过仿真实验对所提方法进行了验证.结果表明,该方法可有效避免复杂的计算以及人工特征提取的盲目性,实现了地磁导航方向适配性分析的自动化,且所提方法的准确率高于传统的BP网络和支持向量机,对地磁导航和航迹规划具有指导意义
文档格式:PDF 文档大小:32.23MB 文档页数:10
综放开采过程中顶煤和覆岩由连续向非连续和散体介质状态转变,描述矿压在断裂覆岩和碎裂顶煤中的形成、传递方式和作用机理是综放开采矿压理论研究的难点.基于光弹试验原理,借助散体介质双轴加载双向流动光弹试验装置,对综放开采过程中散体顶煤与非连续覆岩关键层中力链网络结构及演化特征进行研究.研究发现:地层载荷在煤岩体中构成了错综复杂的弱-强力链网络.综放开采打破了初始力链网络结构的平衡,顶煤与覆岩中形成梁-拱复合力链拱结构,覆岩荷载以强力链形式传递到工作面前方煤体.随着工作面推进和顶煤放出,覆岩梁-拱力链网络不断扩展和演化,形成更大规模的力链拱结构.关键层弯曲、断裂和失稳运动,使工作面前方的强力链拱脚出现回缩现象,力链分布密度和强度增加,导致工作面来压现象.地层内水平力作用使顶煤与覆岩内的梁-拱力链结构效应较更加明显,整体拱结构形态愈加完整,强力链网络结构更加紧致,关键层断裂失稳时力链拱对工作面煤层的作用力更加显著
文档格式:PDF 文档大小:1.47MB 文档页数:8
5G标准下的蜂窝网络正在向异构化、超密集化的方向发展,传统的基于六边形网格模型的研究方法较为理想化且并不精确,越来越不适用于如今的异构网络.针对这个问题,目前常用的方法是使用基于随机几何的泊松点过程来研究异构网络的基站部署,这种方法假设基站的空域分布完全随机,因此得到了覆盖概率的理论下界.但是由于宏蜂窝边缘(盲区)以及热点地区(忙区)等特殊区域中,站点的分布可能形成簇,此时,基于泊松点过程的空域分布将不再准确.针对这个问题,本文使用泊松簇过程研究三层异构蜂窝网络的基站部署与规划.首先,提出基于泊松簇过程的基站部署系统模型,讨论了基于簇分布的基站形成过程;其次,在充分分析用户受到的聚集干扰基础上,采用基于瞬时信干噪比的小区选择机制,推导出了中断概率模型,并讨论了三种特殊条件下的中断概率;最后,通过仿真对比分析了基于泊松簇过程与泊松点过程的中断概率的差异以及信干噪比阈值变化时的中断概率的变化曲线,证明了基于簇的空域基站部署具有更低的中断概率
文档格式:PPT 文档大小:218.5KB 文档页数:50
计算机网络连接形式 1、分布式广域网络连接广域网络 2、公共数据网络 3、总行中心
文档格式:PDF 文档大小:723.23KB 文档页数:9
网络环境下的恶意软件严重威胁着工控系统的安全,随着目前恶意软件变种的逐渐增多,给工控系统恶意软件的检测和安全防护带来了巨大的挑战。现有的检测方法存在着自适应检测识别的智能化程度不高等局限性。针对此问题,围绕威胁工控系统网络安全的恶意软件对象,本文通过结合利用强化学习这一高级的机器学习算法,设计了一个检测应用方法框架。在实现过程中,根据恶意软件行为检测的实际需求,充分结合强化学习的序列决策和动态反馈学习等智能特征,详细讨论并设计了其中的特征提取网络、策略网络和分类网络等关键应用模块。基于恶意软件实际测试数据集进行的应用实验验证了本文方法的有效性,可为一般恶意软件行为检测提供一种智能化的决策辅助手段
文档格式:PDF 文档大小:3.13MB 文档页数:7
针对机器人谐波减速器关节在转动过程中存在的波动摩擦力矩, 提出一种基于傅里叶级数函数和BP神经网络的建模方法, 并完善机器人的动力学模型, 修正了因波动摩擦力矩带来的关节力矩计算误差. 通过研究谐波减速器关节的波动摩擦力矩在不同影响因素下的变化特性, 采用傅里叶级数与BP神经网络结合的方法对波动摩擦力矩进行建模. 通过添加傅里叶级数函数作为BP神经网络的辅助输入, 克服了力矩误差曲线因存在高频周期性波动而难以拟合的困难. 在离线环境下训练神经网络, 完成对关节波动摩擦力矩的建模, 进而完善机器人的动力学模型和修正关节中存在的波动摩擦力矩. 验证实验表明, 使用完善后的动力学模型可以有效计算谐波减速器关节的波动摩擦力矩, 并使修正后的力矩误差维持在[-0.5, 0.5] N·m的范围之内, 方差为0.1659 N2·m2, 是修正前的24.23%
文档格式:PDF 文档大小:754.89KB 文档页数:8
在输电场景中,吊车等大型机械的运作会威胁到输电线路的安全。针对此问题,从训练数据、网络结构和算法超参数的角度进行研究,设计了一种新的端到端的输电线路威胁检测网络结构TATLNet,其中包括可疑区域生成网络VRGNet和威胁判别网络VTCNet,VRGNet与VTCNet共享部分卷积网络以实现特征共享,并利用模型压缩的方式压缩模型体积,提升检测效率,从计算机视觉和系统工程的角度对入侵输电场景的大型机械进行精确预警。针对训练数据偏少的问题,利用多种数据增强技术相结合的方式对数据集进行扩充。通过充分的试验对本方法的多个超参数进行探究,综合检测准确率和推理速度来研究其最优配置。研究结果表明,随着网格数目的增加,准确率也随之增加,而召回率有先增加后降低的趋势,检测效率则随着网格的增加迅速降低。综合检测准确率与推理速度,确定9×9为最优网格划分方案;随着输入图像尺寸的增加,检测准确率稳步上升而检测效率逐渐下降,综合检测准确率和效率,选择480×480像素作为最终的图像输入尺寸。输入实验以及现场部署表明,相对于其他的轻量级目标检测算法,该方法对输电现场入侵的吊车等大型机械的检测具有更优秀的准确性和效率,满足实际应用的需要
文档格式:PDF 文档大小:1.33MB 文档页数:11
基于面部动态表情序列,针对静态表情缺少时间信息等问题,将空间特征与时间特征融合,利用神经网络在图像分类领域良好的特征,对需要进行细节分析的表情序列进行处理,提出基于分离式长期循环卷积网络(Separate long-term recurrent convolutional networks, S-LRCN)的微表情识别方法。首先选取微表情数据集提取面部图像序列,引入迁移学习的方法,通过预训练的卷积神经网络模型提取表情帧的空间特征,降低网络训练中过拟合的危险,并将视频序列的提取特征输入长短期记忆网络(Long short-team memory, LSTM)处理时域特征。最后建立学习者表情序列小型数据库,将该方法用于辅助教学评价
文档格式:PPT 文档大小:1.49MB 文档页数:65
6.1二端口网络的方程与参数 6.2二端口网络的连接与等效 6.3二端口网络的网络函数与特性阻抗
首页上页4849505152535455下页末页
热门关键字
搜索一下,找到相关课件或文库资源 655 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有