点击切换搜索课件文库搜索结果(667)
文档格式:PDF 文档大小:775.79KB 文档页数:8
针对煤与瓦斯突出预测准确率问题,在分析煤与瓦斯突出瓦斯地质因素的基础上,构建了包含瓦斯指标、煤体指标、地应力指标3个一级指标和瓦斯压力、构造煤厚度等12个二级指标的预测指标体系,通过综合运用网络分析法和多类别距离判别法对灰色关联模型中的输入端和输出端进行研究,建立了煤与瓦斯突出多指标耦合预测模型.该模型基于对煤与瓦斯突出瓦斯地质因素的综合分析,计算预测指标权重,划分煤与瓦斯突出可能性等级,建立了对突出可能性进行判别的2个判别式.以平煤八矿为例应用该模型对8组预测样本进行了煤与瓦斯突出可能性判断,预测结果与实际符合,为矿井煤与瓦斯突出防治提供了技术支撑,证明了煤与瓦斯突出多指标耦合预测模型的准确性和适用性
文档格式:PDF 文档大小:1.5MB 文档页数:11
以往对全尾砂膏体屈服应力的研究局限于理想屈服应力流体框架内,认为一定材料配比条件下,膏体的屈服应力是确定的,即认为屈服应力是膏体料浆固有的一个物理属性值。通过开展不同质量分数全尾砂膏体屈服应力测量实验,分析了测量速率与测量时间对不同浓度膏体屈服应力的影响,发现屈服应力值的大小与测量过程相关。对比分析峰值屈服应力、动态屈服应力、静态屈服应力,发现全尾砂膏体屈服应力随测量时间–测量速率在一定条件下的变化规律,即峰值屈服应力、静态屈服应力正比于膏体的测量速率,动态屈服应力反比于测量时间,以变异系数Cv评价料浆屈服应力的离散程度,其中74%质量分数膏体动态屈服应力变异系数最大,Cvmax=27.07%,而66%质量分数膏体静态屈服应力变异系数最小,Cvmin=2.33%。进而从细观层面分析了膏体屈服过程中颗粒间作用力、颗粒网络结构随测量时间–测量速率的变化规律,解释了全尾砂膏体屈服应力易变性机理
文档格式:PDF 文档大小:1.14MB 文档页数:10
基于K均值聚类法对转炉出钢过程的合金损耗进行了研究,分析了影响合金损耗的关键因素,并将其分为3个聚类,得到转炉出钢合金损耗最低的工艺模式。在此基础上,开发了基于PCA-BP神经网络和混合整数线性规划的合金减量化智能控制系统,并以某炼钢厂为例进行了实际应用。通过对模型进行在线运行,验证了模型的准确性和实用性。使用该模型后,提高了合金化钢液成分准确度,减少由传统人工经验计算配料造成的成本浪费和成分超标等情况,优化了合金配料方案,降低了炼钢合金化成本,不同钢种铁合金加入总成本降低5.95%~14.74%,平均降幅11.72%
文档格式:PDF 文档大小:729.77KB 文档页数:8
医疗实体识别是电子病历文本信息抽取的基本任务。针对中文电子病历文本复合实体较多、实体长度较长、句子成分缺失严重、实体边界不清的语言特点以及标注语料难以获取的现状,提出了一种基于领域词典和条件随机场(CRF)的双层标注模型。该模型通过对外部资源的统计分析构建医疗领域词典,再结合条件随机场,进行了两次不同粒度的标注,将领域词典识别的准确性和机器学习的自动性融为一体,从中文电子病历文本中识别出疾病、症状、药品、操作四类医疗实体。该模型在测试数据中的宏精确率为96.7%、宏召回率为97.7%、宏F1值为97.2%。同时对比分析了采用注意力机制的深度神经网络的识别效果,因受到领域数据集大小的限制,在该测试数据集中后者表现不佳。实验结果表明了该双层标注模型对中文医疗实体识别的高效性
文档格式:PDF 文档大小:999.12KB 文档页数:13
从区块链的设计和需求出发,阐明了区块链技术中的基本概念与特征及其基础架构;其次,以比特币为例详细介绍了区块链中各种机制,包括:区块结构与防篡改机制、交易结构与脚本语言、交易人员身份鉴别机制以及网络高效交易传播机制等;而且,按照证明类、拜占庭类、传统共识类及混合共识类等类型,详细描述了当前几种主流的区块链共识算法;此外,对智能合约的概念、组织结构及模块关系以及执行方式与过程进行了讨论;最后,对区块链面临的主要安全挑战进行了总结,从而达到系统地把握区块链技术发展和趋势的目的
文档格式:PDF 文档大小:962.04KB 文档页数:8
研究了多智能体网络中受集合约束的一致性最优化问题,提出了基于原始–对偶梯度的定步长分布式算法。算法中包括步长在内的参数会影响收敛性,需要先进行收敛分析,再根据收敛条件设置合适的参数。本文首先针对一般的定步长迭代格式,提出一种基于李雅普诺夫函数的收敛分析范式,它类似于一般微分方程关于李雅普诺夫稳定的分析方法。然后,针对所考虑的分布式梯度算法,构造了合适的李雅普诺夫函数,并根据收敛条件得到了算法参数设定范围,避免了繁冗复杂的分析论证。本文提出的理论与方法也为其他类型的分布式算法提供了一个框架性、系统性的论证方法
文档格式:PDF 文档大小:1.26MB 文档页数:10
融合手工特征和深度特征,提出了一种集成超限学习机心跳分类方法。手工提取的特征明确地表征了心电信号的特定特性,如相邻心跳时间间隔反映了心跳信号的时域特性,小波系数反映了心跳信号的时频特性。同时设计了一维卷积神经网络对心跳信号特征进行自动提取。基于超限学习机(Extreme leaning machine,ELM),将上述特征融合进行心跳分类。由于ELM初始参数的随机给定可能导致其性能不稳定,进一步提出了一种基于袋装(Bagging)策略的多个ELM集成方法,使分类结果更加稳定且模型泛化能力更强。利用麻省理工心律失常公开数据集对所提方法进行了验证,分类准确率达到了99.02%,实验结果也表明基于融合特征的分类准确率高于基于单独特征的分类准确率
文档格式:PDF 文档大小:4.6MB 文档页数:9
分析了影响转炉冶炼终点钢水中锰含量的因素, 针对基于BP神经网络算法的转炉冶炼终点锰含量预测模型存在的收敛速度慢, 预测精度低等问题, 提出了一种基于极限学习机(ELM) 算法建模的新思路, 并引入正则化以及改进粒子群优化算法(IPSO), 建立了基于改进粒子群算法优化的正则化极限学习机(IPSO-RELM) 的转炉终点锰含量预测模型; 应用国内某炼钢厂转炉实际生产数据对模型进行训练和验证, 并与基于BP、ELM和RELM算法的三类模型进行比较.结果表明, 采用IPSO-RELM方法构建的模型, 锰含量预测误差在±0. 025%范围内的命中率达到94%, 均方误差为2. 18×10-8, 拟合优度R2为0. 72, 上述三项指标均显著优于其他三类模型, 此外, 该模型还具有良好的泛化能力, 对于转炉实际冶炼过程具有一定的指导意义
文档格式:PDF 文档大小:1.72MB 文档页数:11
以磁性Fe3O4微球为模板,通过St?ber法和水热法合成了一种杨梅状的新型Fe3O4@SnO2复合材料,主要应用于电磁波吸收领域。借助X射线衍射、X光电子能谱、扫描电子显微镜、透射电子显微镜、振动样品磁强计和矢量网络分析仪对其物相结构、表面元素、微观形貌、磁性及吸波特性进行了分析表征。分析结果表明,杨梅状的Fe3O4@SnO2的球径约为500 nm,无明显团聚,具有良好的形貌均匀性。其SnO2层由纳米SnO2颗粒松散堆叠而成,具有大量的空隙结构,层厚约为40 nm。杨梅状的Fe3O4@SnO2具有较强的介电损耗能力,且有利于提升阻抗匹配性能,呈现出良好的电磁波吸收能力,当厚度为1.4~2.8 mm时,其最小反射损耗RL(min)均低于?20 dB。其最优厚度为1.7 mm,此时RL(min)为?29 dB,有效带宽为4.9 GHz(13.1~18 GHz),是一种具有发展潜力的吸波材料
文档格式:PDF 文档大小:892.93KB 文档页数:7
近年来,无人机入侵的事件经常发生,无人机跌落碰撞的事件也屡见不鲜,在人群密集的地方容易引发安全事故,所以无人机监测是目前安防领域的研究热点。虽然目前有很多种无人机监测方案,但大多成本高昂,实施困难。在5G背景下,针对此问题提出了一种利用城市已有的监控网络去获取数据的方法,基于深度学习的算法进行无人机目标检测,进而识别无人机,并追踪定位无人机。该方法采用改进的YOLOv3模型检测视频帧中是否存在无人机,YOLOv3算法是YOLO(You only look once,一次到位)系列的第三代版本,属于one-stage目标检测算法这一类,在速度上相对于two-stage类型的算法有着明显的优势。YOLOv3输出视频帧中存在的无人机的位置信息。根据位置信息用PID(Proportion integration differentiation,比例积分微分)算法调节摄像头的中心朝向追踪无人机,再由多个摄像头的参数解算出无人机的实际坐标,从而实现定位。本文通过拍摄无人机飞行的照片、从互联网上搜索下载等方式构建了数据集,并且使用labelImg工具对图片中的无人机进行了标注,数据集按照无人机的旋翼数量进行了分类。实验中采用按旋翼数量分类后的数据集对检测模型进行训练,训练后的模型在测试集上能达到83.24%的准确率和88.15%的召回率,在配备NVIDIA GTX 1060的计算机上能达到每秒20帧的速度,可实现实时追踪
首页上页5657585960616263下页末页
热门关键字
搜索一下,找到相关课件或文库资源 667 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有