·54· 智能系统学报 第2卷 一步研究 2451. [13]TSALLIS C,STARIOLO D A.Generalized simulated 参考文献: annealing[J].Physica A,1996,233:395-406. [1]METROPOLIS N,ROSENBLUTH A,ROSENBLUTH [14]YE Hong,LIN Zhiping.Speed-up simulated annealing M,et al.Equation of state calculations by fast computing by parallel coordinates [J].European Journal of Opera- machines [J ]Journal of Chemical Physics,1953,21: tional Research,2006,173 59-71. 1087.1092. [15]TSOULOS I G,LA GARIS I E.GenAnneal:genetically [2]HOLLAND J H.Adaptation in natural and artificial sys- modified simulated annealing [J ]Computer Physics tems M].Ann Arbor:The University of Michigan Communication,2006,174:846-851. Press,1975. [16]WANG Ling,ZHANG Liang.Stochastic optimization [3]黄席樾,张著洪,何传江,等.现代智能算法理论及应用 using simulated annealingwith hypothesis test [J ]Ap- [M].北京:科学出版社,2005 plied Mathematics and Computation,2006,174:1329- [4]COLONI A,DORIGO M,MANIEZZO V.Distributed 1342 optimization by ant colonies[A].Proceeding of Ist Euro- [17]JI Mingjun,JIN Zhihong,TANG Huanwen.An im- pean Conference of Artificial Life [C].Paris,France, proved simulated annealing for solving the linear con- 1991 strained optimization problems[J].Applied Mathematics [5]KENNEDYJ,EBERHART R.Particle swarm optimi- and Computation,2006,183(1):251-259. zation[A].Proceeding of IEEE International Conference [18]CAVICCHIO DJ.Adaptive search using simulated evo- on Neural Networks[C].Piscataway,NJ,1995. lution[D].Michigan:University of Michigan,1970. [6]SUN Chengyi,SUN Yan,LI Junwei.Mind evolution [19]DE JONG K A.An analysis of the behavior of a class of based machine learning:framework and the implementa- genetic adaptive system[D].Michigan:University of tion [A].Proceedings of the IEEE International Confer- Michigan,1975. ence on Intelligent Engineering System[C].Vienna,Aus- [20]GOLDBERG D E,RICHARDSON J.Genetic algo- tria,1998. rithms with sharing for multimodal function optimization [7]STORN R,PRICE K.Differential evolutioma simple [A].Proceedings of the 2nd International Conference on and efficient adaptive scheme for global optimization over Genetic Algorithms [C].Hillsdale,NJ:Lawrence Erl- continuous spaces [R].TR-95-012,ICSI,March, baum,1987 1995. [21]GOLDB ERG D E.Real-coded genetic algorithms,vir- [8]GIDAS B.Nonstationary Markov chains and convergence tual alphabets and blocking[R].University of Illinois at of the annealing algorithm [J].Journal of Statistical Urbana-Champaign,Technical Report No.90001,1990. Physics,1985,39:73-131. [22 ]ARABAS J MICHAL EWICZ Z,MULA WLA J.Ga- [9]RUDOL PH G.Convergence analysis of canonical genetic VaPS-a genetic algorithm with varying population size algorithms[J ]IEEE Transactions on Neural Networks, [A].Proceedings of the 1st IEEE International Confer- 1994,5(1):96-101. ence on Evolutionary Computation[C].[s.1.]1994. 10 MICHAL EWICZ Z.Genetic algorithms data [23]李茂军,童调生.单亲遗传算法及其全局收敛性分析 structure=evolution programs[M].New York:Spring- [U].自动化学报,1999,25(1):69.73. er-Verlag,1996. LI Maojun,TONG Tiaosheng.A partheno-genetic al- [11]VAN DEN BERGH F.An analysis of particle swarm gorithm and analysis on its global convergence[J].Acta optimizers[D].Pretoria:University of Pretoria,2002. Automatica Sinca,1999,25(1):69 73. [12 ]AZIZI N,ZOL FA GHARI S.Adapative temperature [24]骆晨钟,邵惠鹤.采用混沌变异的进化算法U],控制与 control for simulated annealing:a comparative study[J ] 决策,2000,15(5):557-560. Computers Operations Research,2004,31:2439- LUO Chenzhong,SHAO Huihe.Evolutionary algo- 1994-2008 China Academic Joural Electronic Publishing House.All rights reserved.http://www.cnki.net一步研究. 参考文献 : [1 ]METROPOL IS N , ROSENBLU TH A , ROSENBLU TH M ,et al. Equation of state calculations by fast computing machines[J ]. Journal of Chemical Physics , 1953 , 21 : 1087 - 1092. [2 ] HOLLAND J H. Adaptation in natural and artificial sys2 tems [ M ]. Ann Arbor : The University of Michigan Press , 1975. [3 ]黄席樾 , 张著洪 , 何传江 ,等. 现代智能算法理论及应用 [ M ]. 北京 :科学出版社 , 2005. [4 ]COLONI A , DORIGO M , MANIEZZO V. Distributed optimization by ant colonies[A ]. Proceeding of 1st Euro2 pean Conference of Artificial Life [ C ]. Paris , France , 1991. [5 ] KENNED Y J , EBERHART R. Particle swarm optimi2 zation[ A ]. Proceeding of IEEE International Conference on Neural Networks[C]. Piscataway , NJ ,1995. [6 ] SUN Chengyi , SUN Yan , L I J unwei. Mind evolution based machine learning : framework and the implementa2 tion [ A ]. Proceedings of the IEEE International Confer2 ence on Intelligent Engineering System[C]. Vienna ,Aus2 tria ,1998. [7 ] STORN R , PRICE K. Differential evolution2a simple and efficient adaptive scheme for global optimization over continuous spaces [ R ]. TR - 95 - 012 , ICSI , March , 1995. [ 8 ] GIDAS B. Nonstationary Markov chains and convergence of the annealing algorithm [J ]. Journal of Statistical Physics , 1985 , 39 :73 - 131. [9 ]RUDOL PH G. Convergence analysis of canonical genetic algorithms[J ]. IEEE Transactions on Neural Networks , 1994 ,5 (1) :96 - 101. [ 10 ] MICHAL EWICZ Z. Genetic algorithms + data structure = evolution programs[ M ]. New York : Spring2 er2Verlag , 1996. [11 ]VAN DEN BERGH F. An analysis of particle swarm optimizers[D]. Pretoria : University of Pretoria , 2002. [ 12 ] AZIZI N , ZOL FA GHARI S. Adapative temperature control for simulated annealing : a comparative study[J ]. Computers & Operations Research , 2004 , 31 : 2439 - 2451. [13 ] TSALL IS C , STARIOLO D A. Generalized simulated annealing[J ]. Physica A , 1996 , 233 :395 - 406. [14 ] YE Hong , L IN Zhiping. Speed2up simulated annealing by parallel coordinates [J ]. European Journal of Opera2 tional Research , 2006 , 173 :59 - 71. [ 15 ] TSOULOS I G, LA GARIS I E. GenAnneal : genetically modified simulated annealing [ J ]. Computer Physics Communication , 2006 , 174 : 846 - 851. [16 ] WAN G Ling , ZHAN G Liang. Stochastic optimization using simulated annealingwith hypothesis test [J ]. Ap2 plied Mathematics and Computation , 2006 , 174 : 1329 - 1342. [17 ]J I Mingjun , J IN Zhihong , TAN G Huanwen. An im2 proved simulated annealing for solving the linear con2 strained optimization problems[J ]. Applied Mathematics and Computation , 2006 ,183 (1) : 251 - 259. [ 18 ]CAVICCHIO D J. Adaptive search using simulated evo2 lution[D]. Michigan :University of Michigan , 1970. [ 19 ]DE JON G K A. An analysis of the behavior of a class of genetic adaptive system [ D ]. Michigan : University of Michigan , 1975. [ 20 ] GOLDBERG D E , RICHARDSON J. Genetic algo2 rithms with sharing for multimodal function optimization [A ]. Proceedings of the 2nd International Conference on Genetic Algorithms [ C ]. Hillsdale , NJ : Lawrence Erl2 baum ,1987. [21 ] GOLDBERG D E. Real2coded genetic algorithms , vir2 tual alphabets and blocking [ R ]. University of Illinois at Urbana2Champaign , Technical Report No. 90001 , 1990. [22 ]ARABAS J , MICHAL EWICZ Z , MULAWLA J. Ga2 VaPS2a genetic algorithm with varying population size [ A ]. Proceedings of the 1st IEEE International Confer2 ence on Evolutionary Computation[C]. [s. l. ] , 1994. [23 ]李茂军 ,童调生. 单亲遗传算法及其全局收敛性分析 [J ]. 自动化学报 , 1999 , 25 (1) :69 - 73. L I Maojun , TON G Tiaosheng. A partheno - genetic al2 gorithm and analysis on its global convergence[J ]. Acta Automatica Sinca , 1999 ,25 (1) :69 - 73. [24 ]骆晨钟 ,邵惠鹤. 采用混沌变异的进化算法[J ]. 控制与 决策 , 2000 , 15 (5) :557 - 560. LUO Chenzhong , SHAO Huihe. Evolutionary algo2 · 45 · 智 能 系 统 学 报 第 2 卷