正在加载图片...
降维 降维问题 线性变换s.非线性变换 ·利用类别标记(有监督)Vs.不用类别标记(无监督) ·不同的训练目标 ·最小化重构误差(主成分分析,PCA) ·最大化类别可分性(线性判别分析,LDA) 最小化分类误差(判别训练, discriminative training) 保留最多细节的投影(投影寻踪, projection pursuit) 最大限度的使各特征之间独立(独立成分分析,CA)降维 • 降维问题 • 线性变换 vs. 非线性变换 • 利用类别标记(有监督) vs. 不用类别标记(无监督) • 不同的训练目标 • 最小化重构误差(主成分分析,PCA) • 最大化类别可分性(线性判别分析,LDA) • 最小化分类误差(判别训练,discriminative training) • 保留最多细节的投影(投影寻踪,projection pursuit) • 最大限度的使各特征之间独立(独立成分分析,ICA)
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有