正在加载图片...
K.w. Kolasinski/ Current Opinion in Solid State and Materials Science 10(2006)182-191 [6]Thelander C, Agarwal P, Brongersma S, Eymery J, Feiner LF. [28]P M, Varghese CK, Grimes CA. Synthesis of gold-silica Forchel A. et al. Nanowire-based one-dimensional electronics ite nanowires through solid-liquid-solid phase growth. J Nanotech 2003: 3: 341-6 [7 Fan HJ, Werner P, Zacharias M. Semiconductor nanowires: from [29 Wang F, Malac M ton RF. Meldrum A. Li P. Freeman MR self-organization to patterned growth. Small 2006: 2: 700-17 et al. Controlled growth of silicon oxide nanowires from a [8 Lu w, Lieber CM. Semiconductor nanowires. J Phys D: Appl Phys patterned reagent. J Phys Chem C 2007: 111: 1865-7 06:39:R387-406 30] Lew KK, Pan L, Dickey EC, Redwing JM. Effect of growth [9] Wang FD, Dong AG, Sun JW, Tang R, Yu H, Buhro WE. conditions on the composition and structure of Sil- Gex nanowires Solution-liquid-solid growth of semiconductor nanowires. Inorg grown by vapor-liquid-solid growth. J Mater Res 2006: 21: 2876-81 Chem200645:75ll-21. 31] Sun XH, Didychuk C, Sham TK, Wong NB. Germanium nano- [10] Dujardin R, Poydenot V, Devillers T, Favre-Nicolin V, Gentile P, wires: synthesis morphology and local structure studies. Nanotech- Barski a. growth mechanism of si nanowhiskers and sige nology2006:17:2925-30 heterostructures in Si nanowhiskers: X-ray scattering and electro [32]Chandrasekaran H, Sumanasekara GU, Sunkara MK. Rationali- oscopy investigations. Appl Phys Lett 2006: 89: 153129. zation of nanowire synthesis using low-melting point metals. J Phy [ll] Hsu JF, Huang BR. The growth of silicon nanowires by electroless Chem b2006:1l0:18351-7 plating technique of Ni catalysts on silicon substrate. Thin Solid [33] Jung wS, Joo HU. Catalytic growth of aluminum nitride whiskers Fims2006:514:20-4 by a modified carbothermal reduction and nitridation method. J [12] Wang CX, Hirano M, Hosono H. Origin of diameter-dependent Cryst Growth 2005: 285: 566-7 growth direction of silicon nanowires. Nano Lett 2006: 6: 1552-5 34 Li WE, Ma XL, Zhang wS, Zhang W, Li Y, Zhang ZD. Synthesis [13] Hannon JB, Kodambaka S, Ross FM, Tromp RM. The influence of and characterization of g-Al,O3 nanorods. Phys Status Solidi A he surface migration of gold on the growth of silicon nanowires. 2006:203:294-9 Nature(London) 2006: 440: 69-71 [35] Yun SH, Wu JZ, Dibos A, Gao x, Karlsson UO. Growth of [14 Kodambaka S, Tersoff J, Reuter MC, Ross FM. Diameter inclined boron nanowire bundle arrays in an oxide-assisted vapor- quid-solid process. Appl Phys Lett 2005: 87 wires. Phys Rev Lett 2006: 96: 096105 36 Chen H, Yang Y, Hu Z, Huo KF, Ma Yw, Chen Y, et al [15 Dubrovski VG, Sibirev NV, Cirlin GE, Harmand JC, Ustinov VM. Synergism of Csn six-membered Theoretical analysis of the vapor-liquid-solid mechanism of nan growth of CNx nanotubes with pyridine precursor. J Phys CI wire growth during molecular beam epitaxy. Phys Rev B2006:1l0:16422-7 2006:73:021603 37 Kuo TJ, Huang MH. Gold-catalyzed low-temperature growth of [16] Ross FM, Tersoff J, Reuter MC. Sawtooth faceting in silicon cadmium oxide nanowires by vapor transport. J Phys Chem B nanowires. Phys Rev Lett 2005: 95: 146104 2006:110:13717-21 [17 Christiansen S Schneider R, Scholz R, Gosele U, Stelzner T, Andra [8 Zhang J, Yang Y, Jiang F, LiJ, Xu B, Wang S, et al. Fabrication of G, et al. Vapor-liquid-solid growth of silicon nanowires by semiconductor Cds hierarchical nanostructure ructures. J Cryst Growth 006:100:084323 39Morber JR, Ding Y, Haluska MS, Li Y, Liu P, Wang ZL, et al. [18] Tham D, Nam CY, Byon K, Kim J, Fischer JE. Applications of PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, anowires Appl Phys A 2006: 85: 227-31 2006;110:21672-9 [19] Sivakov V, Andra G, Himcinschi C, Gisele hn DRT, [40 Verheijen MA, Immink G, de Smet T, Borgstrom MT, Bakkers Christiansen s. Growth peculiarities during va EPAM. Growth kinetics of heterostructured GaP-GaAs nanowires owth of silicon nanowhiskers by electron-beam ev J Am Chem soc2006;128:1353-9 Phys A2006:85:311-5 [41] Johansson J, Wacaser BA, Dick KA, Seifert w. Growth related 20] Wang D, Qian F, Yang C, Zhong Z, Lieber CM. Rational growth of aspects of epitaxial nanowires. Nanotechnology 2006: 17: S355-61 branched and hyperbranched nanowire structures. Nano Lett [42]Dick KA, Deppert K, Karlsson LS, Wallenberg LR, Samuelson L, 004:4:871-4 Seifert W. A new understanding of au-assisted growth of Ill-V [21]Harutyunyan AR, Tokune T, Mora E Liquid as a required catalyst semiconductor nanowires. Ady Func mater 2005: 15: 1603-10 phase for carbon single-walled nanotube growth. Appl Phys Lett [43] Harmand JC, Patriarche G, Pere-Laperne N, Merat-Combes M-N Travers L, Glas F Analysis of vapor-liquid-solid mechanism in Au. [22] Hofmann S, Csanyi G, Ferrari AC, Payne MC, Robertson ssisted GaAs nanowire growth. Appl Phys Lett 2005: 87: 203101 ctivation energy path for 44Persson AL, Larsson MW, Stenstrom S, Ohlsson BJ, Samuelson L growth. Phys Rev Lett 2005: 95: 03610 Wallenberg Lr. Solid-phase diffusion mechanism for GaAs nano- [23] Helveg S, Lopez-Cartes C, Sehested J, Hansen PL, Clausen BS, wire growth. Nature Mater 2004; 3: 677-81 Rostrup-Nielsen JR, et al. Atomic-scale imaging of carbon nano- (45 Johnson MC, Aloni S, McCready DE, Bourret-Courchesne ED. bre growth. Nature(London)2004: 427: 426-9 Controlled vapor-liquid-solid growth of indium, gallium, and tin [24] Ding F, Bolton K, Rosen A Molecular dynamics study of SwNT xide nanowires via chemical vapor transport Cryst Growth Design owth on catalyst particles without ten 2006:6:1936-41 Mater Sci2006:35:243-6 [46] Johansson J, Svensson CPT, Martensson T, Samuelson L, Seifert W [25]Cojocaru CS, Senger A, Le Normand F. A nucleation and growth Mass transport model for semiconductor nanowire growth. J Phys model of vertically-oriented carbon nanofibers or nanotubes b Chem b2005;109:13567-71 plasma-enhanced catalytic chemical vapor deposition. J Nanosci [47] Park HD, Prokes SM, Twigg ME, Cammarata RC, Gaillot AC Si wires. Appl Phys Lett 2006: 8 [26] Hu JT, Min OY, Yang PD, Lieber CM. Controlled growth and [48]Kang TT, Liu X, Zhang RQ, Hu WG, Cong G, Zhao FA, et al electrical properties of heterojunctions of carbon nanotubes and Inn nanoflowers grown by metal organic chemical vapor deposi silicon nanowires. Nature(London)1999: 399: 48-51 tion. Appl Phys Lett 2006: 89: 071113 Xu BL. Yang YD, Jiang FH, Li JP, Wang XC, et al. [49] Sun XH, Yu B, Ng G, Nguyen eyyappan M. IlI-VI Catalyzed-assisted growth of well-aligned silicon oxide nanowires. J (In2Se3) nanowires Non-Cryst Solids 2006: 352: 2859-62 synthesis and characterization. Appl ett2006;89:2333121[*6] Thelander C, Agarwal P, Brongersma S, Eymery J, Feiner LF, Forchel A, et al. Nanowire-based one-dimensional electronics. Mater Today 2006;9:28–35. [*7] Fan HJ, Werner P, Zacharias M. Semiconductor nanowires: from self-organization to patterned growth. Small 2006;2:700–17. [*8] Lu W, Lieber CM. Semiconductor nanowires. J Phys D: Appl Phys 2006;39:R387–406. [*9] Wang FD, Dong AG, Sun JW, Tang R, Yu H, Buhro WE. Solution–liquid–solid growth of semiconductor nanowires. Inorg Chem 2006;45:7511–21. [10] Dujardin R, Poydenot V, Devillers T, Favre-Nicolin V, Gentile P, Barski A. Growth mechanism of Si nanowhiskers and SiGe heterostructures in Si nanowhiskers: X-ray scattering and electron microscopy investigations. Appl Phys Lett 2006;89:153129. [11] Hsu JF, Huang BR. The growth of silicon nanowires by electroless plating technique of Ni catalysts on silicon substrate. Thin Solid Films 2006;514:20–4. [12] Wang CX, Hirano M, Hosono H. Origin of diameter-dependent growth direction of silicon nanowires. Nano Lett 2006;6:1552–5. [13] Hannon JB, Kodambaka S, Ross FM, Tromp RM. The influence of the surface migration of gold on the growth of silicon nanowires. Nature (London) 2006;440:69–71. [14] Kodambaka S, Tersoff J, Reuter MC, Ross FM. Diameter￾independent kinetics in the vapor–liquid–solid growth of Si nano￾wires. Phys Rev Lett 2006;96:096105. [*15] Dubrovskii VG, Sibirev NV, Cirlin GE, Harmand JC, Ustinov VM. Theoretical analysis of the vapor–liquid–solid mechanism of nano￾wire growth during molecular beam epitaxy. Phys Rev E 2006;73:021603. [16] Ross FM, Tersoff J, Reuter MC. Sawtooth faceting in silicon nanowires. Phys Rev Lett 2005;95:146104. [17] Christiansen S, Schneider R, Scholz R, Go¨sele U, Stelzner T, Andra¨ G, et al. Vapor–liquid–solid growth of silicon nanowires by chemical vapor deposition on implanted templates. J Appl Phys 2006;100:084323. [18] Tham D, Nam CY, Byon K, Kim J, Fischer JE. Applications of electron microscopy to the characterization of semiconductor nanowires. Appl Phys A 2006;85:227–31. [19] Sivakov V, Andra G, Himcinschi C, Go¨sele U, Zahn DRT, Christiansen S. Growth peculiarities during vapor–liquid–solid growth of silicon nanowhiskers by electron-beam evaporation. Appl Phys A 2006;85:311–5. [20] Wang D, Qian F, Yang C, Zhong Z, Lieber CM. Rational growth of branched and hyperbranched nanowire structures. Nano Lett 2004;4:871–4. [21] Harutyunyan AR, Tokune T, Mora E. Liquid as a required catalyst phase for carbon single-walled nanotube growth. Appl Phys Lett 2005;87:051919. [22] Hofmann S, Csanyi G, Ferrari AC, Payne MC, Robertson J. Surface diffusion: the low activation energy path for nanotube growth. Phys Rev Lett 2005;95:036101. [23] Helveg S, Lo´pez-Cartes C, Sehested J, Hansen PL, Clausen BS, Rostrup-Nielsen JR, et al. Atomic-scale imaging of carbon nano- fibre growth. Nature (London) 2004;427:426–9. [24] Ding F, Bolton K, Rose´n A. Molecular dynamics study of SWNT growth on catalyst particles without temperature gradients. Comput Mater Sci 2006;35:243–6. [25] Cojocaru CS, Senger A, Le Normand F. A nucleation and growth model of vertically-oriented carbon nanofibers or nanotubes by plasma-enhanced catalytic chemical vapor deposition. J Nanosci Nanotech 2006;6:1331–8. [26] Hu JT, Min OY, Yang PD, Lieber CM. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature (London) 1999;399:48–51. [27] Zhang J, Xu BL, Yang YD, Jiang FH, Li JP, Wang XC, et al. Catalyzed-assisted growth of well-aligned silicon oxide nanowires. J Non-Cryst Solids 2006;352:2859–62. [28] Paulose M, Varghese CK, Grimes CA. Synthesis of gold-silica composite nanowires through solid–liquid–solid phase growth. J Nanosci Nanotech 2003;3:341–6. [29] Wang F, Malac M, Egerton RF, Meldrum A, Li P, Freeman MR, et al. Controlled growth of silicon oxide nanowires from a patterned reagent. J Phys Chem C 2007;111:1865–7. [30] Lew KK, Pan L, Dickey EC, Redwing JM. Effect of growth conditions on the composition and structure of Si1xGex nanowires grown by vapor–liquid–solid growth. J Mater Res 2006;21:2876–81. [31] Sun XH, Didychuk C, Sham TK, Wong NB. Germanium nano￾wires: synthesis morphology and local structure studies. Nanotech￾nology 2006;17:2925–30. [*32] Chandrasekaran H, Sumanasekara GU, Sunkara MK. Rationali￾zation of nanowire synthesis using low-melting point metals. J Phys Chem B 2006;110:18351–7. [33] Jung WS, Joo HU. Catalytic growth of aluminum nitride whiskers by a modified carbothermal reduction and nitridation method. J Cryst Growth 2005;285:566–71. [34] Li WF, Ma XL, Zhang WS, Zhang W, Li Y, Zhang ZD. Synthesis and characterization of g-Al2O3 nanorods. Phys Status Solidi A 2006;203:294–9. [*35] Yun SH, Wu JZ, Dibos A, Gao X, Karlsson UO. Growth of inclined boron nanowire bundle arrays in an oxide-assisted vapor– liquid–solid process. Appl Phys Lett 2005;87:113109. [36] Chen H, Yang Y, Hu Z, Huo KF, Ma YW, Chen Y, et al. Synergism of C5N six-membered ring and vapor–liquid–solid growth of CNx nanotubes with pyridine precursor. J Phys Chem B 2006;110:16422–7. [37] Kuo TJ, Huang MH. Gold-catalyzed low-temperature growth of cadmium oxide nanowires by vapor transport. J Phys Chem B 2006;110:13717–21. [38] Zhang J, Yang Y, Jiang F, Li J, Xu B, Wang S, et al. Fabrication of semiconductor CdS hierarchical nanostructures. J Cryst Growth 2006;293:236–41. [39] Morber JR, Ding Y, Haluska MS, Li Y, Liu P, Wang ZL, et al. PLD-assisted VLS growth of aligned ferrite nanorods, nanowires, and nanobelts-synthesis, and properties. J Phys Chem B 2006;110:21672–9. [40] Verheijen MA, Immink G, de Smet T, Borgstro¨m MT, Bakkers EPAM. Growth kinetics of heterostructured GaP–GaAs nanowires. J Am Chem Soc 2006;128:1353–9. [*41] Johansson J, Wacaser BA, Dick KA, Seifert W. Growth related aspects of epitaxial nanowires. Nanotechnology 2006;17:S355–61. [42] Dick KA, Deppert K, Karlsson LS, Wallenberg LR, Samuelson L, Seifert W. A new understanding of au-assisted growth of III–V semiconductor nanowires. Adv Func Mater 2005;15:1603–10. [*43] Harmand JC, Patriarche G, Pe´re´-Laperne N, Me´rat-Combes M-N, Travers L, Glas F. Analysis of vapor–liquid–solid mechanism in Au￾assisted GaAs nanowire growth. Appl Phys Lett 2005;87:203101. [44] Persson AI, Larsson MW, Stenstro¨m S, Ohlsson BJ, Samuelson L, Wallenberg LR. Solid-phase diffusion mechanism for GaAs nano￾wire growth. Nature Mater 2004;3:677–81. [45] Johnson MC, Aloni S, McCready DE, Bourret-Courchesne ED. Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport. Cryst Growth Design 2006;6:1936–41. [*46] Johansson J, Svensson CPT, Ma˚rtensson T, Samuelson L, Seifert W. Mass transport model for semiconductor nanowire growth. J Phys Chem B 2005;109:13567–71. [*47] Park HD, Prokes SM, Twigg ME, Cammarata RC, Gaillot AC. Si￾assisted growth of InAs nanowires. Appl Phys Lett 2006;89:223125. [48] Kang TT, Liu X, Zhang RQ, Hu WG, Cong G, Zhao FA, et al. InN nanoflowers grown by metal organic chemical vapor deposi￾tion. Appl Phys Lett 2006;89:071113. [49] Sun XH, Yu B, Ng G, Nguyen TD, Meyyappan M. III–VI compound semiconductor indium selenide (In2Se3) nanowires: synthesis and characterization. Appl Phys Lett 2006;89:2333121. 190 K.W. Kolasinski / Current Opinion in Solid State and Materials Science 10 (2006) 182–191
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有