正在加载图片...
K w. Kolasinski Current Opinion in Solid State and Materials Science 10(2006 )182-191 191 [50] Jiang CB, Wu B Zhang ZQ, Lu L, Lisx, Mao sX. Lithium fluoride [65] Kolasinski Kw. Growth and etching of semiconductors. In nanowires via vapor-liquid-solid growth. Appl Phys Lett 2006: 88: asselbrink E, Lundavist I, editors. Handbook of surface science, vol 3 Amsterdam: Elsevier, in press [51] Wang B, Yang YH, Yang Gw. Growth mechanisms of SnO / Sn [66] Tan TY, Li N, Gosele U Is there a thermodynamic size limit of anocables. Nanotechnology 2006: 17: 4682-8 nanowires grown by the vapor-liquid-solid process? Appl Phys Lett [52 Nguyen P. Ng HT, Meyyappan M. Catalyst metal selection for 2003:83:1199201 synthesis of inorganic nanowires. Adv Mater 2005: 17: 1773-7. [67] Givargizov El. Fundamental aspects of VLs growth. J Cryst 53]Xu C, Kim D Chun J, Rho K, Chon B, Hong S, et al. Temperature- Growth1975:31:20-30 controlled growth of Zno nanowires and nanoplates in the temper- [68 Lowndes DH, Fowlkes JD, Pedraza AJ. Early stages of pulsed-laser ature range 250-300C. J Phys Chem B 2006: 110. 21741-6. growth of silicon microcolumns and microcones in air and sF6. [54] Hao YF, Meng GW, Wang ZL, Ye CH, Zhang LD. Periodically Appl Surf Sci 2000: 154: 647-58 twinned nanowires and polytypic nanobelts of ZnS: The role of mas [69] Dick KA, Deppert K, Martensson T, Mandl B, Samuelson L, Seifert diffusion in vapor-liquid-solid growth. Nano Lett 2006: 6: 1650-5. w. Failure of the vapor-liquid-solid mechanism in Au-assisted 55] Jia TQ, Chen HX, Huang M, Wu XJ, Zhao FL, Baba M, et al. MOVPE growth of InAs nanowires Nano Lett 2005: 5: 761 ZnSe nanowires grown on the crystal surface by femtosecond laser o] Jensen LE, Bjork MT, Jeppesen S. Persson Al, Ohlsson BJ. ablation in air. Appl Phys Lett 2006: 89: 101116 Samuelson L. Role of surface diffusion in chemical beam epitaxy [56] Yang LW, Wu XL, Huang GS, Qiu T, Yang YM, Siu GG. Self- of InAs nanowires. Nano lett 2004: 4: 1961-4. catalytic synthesis and light-emitting property of highly aligned Mn- [71] Park HD, Gaillot AC, Prokes SM, Cammarata RC Observation of doped Zn, SiOa nanorods. Appl Phys A 2005: 81: 929-31 size dependent liquidus depression in the growth of InAs nanowires. 57] Janik E, Sadowski J, Dluzewski P, Kret s, Baczewski LT, J Cryst Growth 2006: 296: 159-64 Petroutchik A, et al. ZnTe nanowires grown on GaAs(100) [72] Ding F, Rosen A, Bolton K. Molecular dynamics study of the substrates by molecular beam epitaxy. Appl Phys Lett 2006: 89 catalyst particle size dependence on carbon nanotube growth. J 133114 [58] Takagi D, Homma Y, Hibino H, Suzuki S, Kobayashi Y. Single- [73] Ding F, Bolton K, Rosen A Nucleation and growth of single-wall walled carbon nanotube growth from highly activated metal carbon nanotubes: a molecular dynamics study. J Phys Chem B nanoparticles. Nano Lett 2006: 6: 2642-5 2004;108:17369-77 [59] Gao P, Wang ZL. Self-assembled nanowire-nanoribbon junction of [74] Blakely JM, Jackson KA. Growth of crystal whiskers. J Chem Phy ZnO. J Phys Chem B 2002: 106: 12653-8. [60] Mohammad SN. Self-catalysis: A contamination-free, substrate-free [75 Kwon SJ, Park J-G. Theoretical analysis of the radius of semicon- growth mechanism for single-crystal nanowire and nanotube growth ductor nanowires grown by the catalytic vapour-liquid-solid chemical vapor deposition. J Chem Phys 2006: 125: 094705 mechanism. J Phys: Cond Matter 2006: 18: 3875-85 [61]Morales AM, Lieber CM. A laser ablation method for the synthesis [76] Chen Z, Cao CB. Effect of size in nanowires grown by the vapor- of crystalline semiconductor nanowires. Science 1998: 279: 208-1l liquid-solid mechanism. Appl Phys Lett 2006: 88: 143118 [62] Duan X, Lieber CM. General synthesis of compound semiconductor [77] Tan TY, Li N, Gosele U. On the thermodynamic size nowires. Ady mater 2000: 12- 298. [63] Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM. Growth 2004;78:519-26 of nanowire superlattice structures for nanoscale photonics and [78Li N, Tan TY, Gosele U. Chemical tension and global equilibrium electronics. Nature( London) 2002: 415: 617-20 in VLS nanostructure growth process: from nanohillocks to [64]Kolasinski Kw. Surface science: foundations of catalysis and anowires. Appl Phys A 2007: 86: 433-40.[50] Jiang CB, Wu B, Zhang ZQ, Lu L, Li SX, Mao SX. Lithium fluoride nanowires via vapor–liquid–solid growth. Appl Phys Lett 2006;88: 093103. [51] Wang B, Yang YH, Yang GW. Growth mechanisms of SnO2/Sn nanocables. Nanotechnology 2006;17:4682–8. [*52] Nguyen P, Ng HT, Meyyappan M. Catalyst metal selection for synthesis of inorganic nanowires. Adv Mater 2005;17:1773–7. [53] Xu C, Kim D, Chun J, Rho K, Chon B, Hong S, et al. Temperature￾controlled growth of ZnO nanowires and nanoplates in the temper￾ature range 250–300 C. J Phys Chem B 2006;110: 21741–6. [54] Hao YF, Meng GW, Wang ZL, Ye CH, Zhang LD. Periodically twinned nanowires and polytypic nanobelts of ZnS: The role of mass diffusion in vapor–liquid–solid growth. Nano Lett 2006;6:1650–5. [55] Jia TQ, Chen HX, Huang M, Wu XJ, Zhao FL, Baba M, et al. ZnSe nanowires grown on the crystal surface by femtosecond laser ablation in air. Appl Phys Lett 2006;89:101116. [56] Yang LW, Wu XL, Huang GS, Qiu T, Yang YM, Siu GG. Self￾catalytic synthesis and light-emitting property of highly aligned Mn￾doped Zn2SiO4 nanorods. Appl Phys A 2005;81:929–31. [57] Janik E, Sadowski J, Dluzewski P, Kret S, Baczewski LT, Petroutchik A, et al. ZnTe nanowires grown on GaAs(1 0 0) substrates by molecular beam epitaxy. Appl Phys Lett 2006;89: 133114. [*58] Takagi D, Homma Y, Hibino H, Suzuki S, Kobayashi Y. Single￾walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett 2006;6:2642–5. [59] Gao P, Wang ZL. Self-assembled nanowire–nanoribbon junction of ZnO. J Phys Chem B 2002;106:12653–8. [60] Mohammad SN. Self-catalysis: A contamination-free, substrate-free growth mechanism for single-crystal nanowire and nanotube growth by chemical vapor deposition. J Chem Phys 2006;125:094705. [61] Morales AM, Lieber CM. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998;279:208–11. [62] Duan X, Lieber CM. General synthesis of compound semiconductor nanowires. Adv Mater 2000;12:298. [63] Gudiksen MS, Lauhon LJ, Wang J, Smith DC, Lieber CM. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature (London) 2002;415:617–20. [64] Kolasinski KW. Surface science: foundations of catalysis and nanoscience. Chichester: John Wiley and Sons; 2002. [65] Kolasinski KW. Growth and etching of semiconductors. In: Hasselbrink E, Lundqvist I, editors. Handbook of surface science, vol. 3 Amsterdam: Elsevier; in press. [66] Tan TY, Li N, Go¨sele U. Is there a thermodynamic size limit of nanowires grown by the vapor–liquid–solid process? Appl Phys Lett 2003;83:1199–201. [67] Givargizov EI. Fundamental aspects of VLS growth. J Cryst Growth 1975;31:20–30. [68] Lowndes DH, Fowlkes JD, Pedraza AJ. Early stages of pulsed-laser growth of silicon microcolumns and microcones in air and SF6. Appl Surf Sci 2000;154:647–58. [69] Dick KA, Deppert K, Ma˚rtensson T, Mandl B, Samuelson L, Seifert W. Failure of the vapor–liquid–solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett 2005;5:761–4. [70] Jensen LE, Bjo¨rk MT, Jeppesen S, Persson AI, Ohlsson BJ, Samuelson L. Role of surface diffusion in chemical beam epitaxy of InAs nanowires. Nano Lett 2004;4:1961–4. [71] Park HD, Gaillot AC, Prokes SM, Cammarata RC. Observation of size dependent liquidus depression in the growth of InAs nanowires. J Cryst Growth 2006;296:159–64. [72] Ding F, Rosen A, Bolton K. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth. J Chem Phys 2004;121:2775–9. [73] Ding F, Bolton K, Rosen A. Nucleation and growth of single-walled carbon nanotubes: a molecular dynamics study. J Phys Chem B 2004;108:17369–77. [74] Blakely JM, Jackson KA. Growth of crystal whiskers. J Chem Phys 1962;37:428–30. [75] Kwon SJ, Park J-G. Theoretical analysis of the radius of semicon￾ductor nanowires grown by the catalytic vapour–liquid–solid mechanism. J Phys: Cond Matter 2006;18:3875–85. [76] Chen Z, Cao CB. Effect of size in nanowires grown by the vapor– liquid–solid mechanism. Appl Phys Lett 2006;88:143118. [77] Tan TY, Li N, Go¨sele U. On the thermodynamic size limit of nanowires grown by the vapor–liquid–solid process. Appl Phys A 2004;78:519–26. [*78] Li N, Tan TY, Go¨sele U. Chemical tension and global equilibrium in VLS nanostructure growth process: from nanohillocks to nanowires. Appl Phys A 2007;86:433–40. K.W. Kolasinski / Current Opinion in Solid State and Materials Science 10 (2006) 182–191 191
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有