正在加载图片...
·1230· 工程科学学报,第40卷,第10期 度为1.0gL的环境下生长 mineral bioleaching mechanism and process.Coal Ash,2011,23 (3)铁氟络合形态分析可知,细菌只有在溶液 (6):21 (陈向,廖德华.国内外铀矿石生物浸出机理及工艺应用研究 中FF2+占氟化物质量分数≥45%时正常生长,对 现状.粉煤灰,2011,23(6):21) 应游离氟离子浓度为2.87×10-5mol.L-1,Fe3+浓 [9]Liu Y J,Liu JS,Li J,et al.Comparison of microbial diversity in 度越高,对应的游离氟离子浓度越低.络合机理实 acid heap leaching and bio-heap-leaching with fluoride-bearing 验结果表明,F-与Fe3+能形成配位数是1~3的复 uranium ores.Nonferrous Met Extract Metall),2016(3):26 杂稳定络合物,且随着氟铁比的减小,氟与铁的络合 (刘亚洁,柳建设,李江,等。含氟轴矿石酸法堆浸与生物堆 物向低配位方向移动,可以通过调整培养基中的 浸体系微生物群落多样性比较.有色金属(冶炼部分),2016 (3):26) F/Re3+质量浓度比来调整氟铁络合产物. [10]Bibi S,Kamran M A,Sultana J,et al.Occurrence and methods to remove arsenic and fluoride contamination in water.Environ 参考文献 Chem Lett,2017,15(1):125 [1]Peng Z J.Yu R L,Qiu G Z.et al.Really active form of fluorine [11]Magesh N S,Chandrasekar N,Elango L.Occurrence and distri- toxicity affecting Acidithiobacillus ferrooxidans activity in bioleach- bution of fluoride in the groundwater of the Tamiraparani River ing uranium.Trans Nonferrous Met Soc China,2013,23(3):812 basin,South India:a geostatistical modeling approach.Enriron [2]Wen JK,Yao CC.Wu M L,et al.Industrial heap bioleaching of Earth Sci,2016,75(23):1483 arsenic-bearing low-grade copper sulfide ore.J Unie Sci Technol [12]Shen J J,Schafer A.Removal of fluoride and uranium by nanofil- Beijing,2010,32(4):420 tration and reverse osmosis:a review.Chemosphere,2014,117: (温建康,姚国成,武名麟,等含砷低品位硫化铜矿生物堆 679 浸工业试验.北京科技大学学报,2010,32(4):420) [13]Ma L Y,Wang X J,Tao J M,et al.Differential fluoride toler- [3]Brierley J A,Kuhn M C.Fluoride toxicity in a chalcocite bioleach ance between sulfur-and ferrous iron-grown Acidithiobacillus fer- heap process.Hydrometallurgy,2010,104(34):410 rooxidans and its mechanism analysis.Biochem Eng 2017, [4]Razzell W E,Trussell P C.Isolation and properties of an iron-oxi- 119:59 dizing Thiobacillus.J Bacteriol,1963,85(3):595 [14]Yin J L.Distribution of Fluoride and Aluminum Fractions in Soil [5] Suzuki I,Lee D,Mackay B,et al.Effect of various ions,pH and Aggregates and the Relationship with Soil Chemical Properties un- osmotic pressure on oxidation of elemental sulfur by Thiobacillus der Tea Plantation Dissertation].Ya'an:Sichuan Agricultural thiooxidans.Appl Enriron Microbiol,1999.65(11):5163 University,2016 [6]Owusu-Agyeman I.Jeihanipour A,Luxbacher T,ct al.Implica- (殷佳丽.茶园土壤团聚体氟、铝形态分布及其与土壤化学 tions of humic acid,inorganic carbon and speciation on fluoride re- 性质的关系[学位论文].雅安:四川农业大学,2016) tention mechanisms in nanofiltration and reverse osmosis.Membr [15]Yasuda E Y,Koroishi E T,Vargas JA V,et al.Dissolution e- Si,2017,528:82 valuation of coquina,Part I:carbonated-brine continuous injec- [7]Rodrigues M L M,Lopes K CS,Leoncio HC,et al.Bioleaching tion using computed tomography and PHREEQC.Energy Fuels. of fuoride-bearing secondary copper sulphides:column experi- 2018,32(4):5289 ments with Acidithiobacillus ferrooxidans.Chem Eng /2016, [16]Guneriusson L,Sandstrom A,Holmgren A,et al.Jarosite inclu- 284:1279 sion of fluoride and its potential significance to bioleaching of sul- [8]Chen X,Liao D H.The-state-of-the-arts of domestic and foreign phide minerals.Hydrometallurgy,2009,96(1-2):108工程科学学报,第 40 卷,第 10 期 度为 1郾 0 g·L - 1的环境下生长. (3)铁氟络合形态分析可知,细菌只有在溶液 中 FeF 2 + 占氟化物质量分数逸45% 时正常生长,对 应游离氟离子浓度为 2郾 87 伊 10 - 5 mol·L - 1 ,Fe 3 + 浓 度越高,对应的游离氟离子浓度越低. 络合机理实 验结果表明,F - 与 Fe 3 + 能形成配位数是 1 ~ 3 的复 杂稳定络合物,且随着氟铁比的减小,氟与铁的络合 物向低配位方向移动,可以通过调整培养基中的 F - / Fe 3 + 质量浓度比来调整氟铁络合产物. 参 考 文 献 [1] Peng Z J,Yu R L, Qiu G Z, et al. Really active form of fluorine toxicity affecting Acidithiobacillus ferrooxidans activity in bioleach鄄 ing uranium. Trans Nonferrous Met Soc China, 2013, 23(3): 812 [2] Wen J K, Yao G C, Wu M L, et al. Industrial heap bioleaching of arsenic鄄bearing low鄄grade copper sulfide ore. J Univ Sci Technol Beijing, 2010, 32(4): 420 (温建康, 姚国成, 武名麟, 等. 含砷低品位硫化铜矿生物堆 浸工业试验. 北京科技大学学报, 2010, 32(4): 420) [3] Brierley J A, Kuhn M C. Fluoride toxicity in a chalcocite bioleach heap process. Hydrometallurgy, 2010, 104(3鄄4): 410 [4] Razzell W E, Trussell P C. Isolation and properties of an iron鄄oxi鄄 dizing Thiobacillus. J Bacteriol, 1963, 85(3): 595 [5] Suzuki I, Lee D, Mackay B, et al. Effect of various ions, pH and osmotic pressure on oxidation of elemental sulfur by Thiobacillus thiooxidans. Appl Environ Microbiol, 1999, 65(11): 5163 [6] Owusu鄄Agyeman I, Jeihanipour A, Luxbacher T, et al. Implica鄄 tions of humic acid, inorganic carbon and speciation on fluoride re鄄 tention mechanisms in nanofiltration and reverse osmosis. J Membr Sci, 2017, 528: 82 [7] Rodrigues M L M, Lopes K C S, Le觝ncio H C, et al. Bioleaching of fluoride鄄bearing secondary copper sulphides: column experi鄄 ments with Acidithiobacillus ferrooxidans. Chem Eng J, 2016, 284: 1279 [8] Chen X, Liao D H. The鄄state鄄of鄄the鄄arts of domestic and foreign mineral bioleaching mechanism and process. Coal Ash, 2011, 23 (6): 21 (陈向, 廖德华. 国内外铀矿石生物浸出机理及工艺应用研究 现状. 粉煤灰, 2011, 23(6): 21) [9] Liu Y J,Liu J S,Li J, et al. Comparison of microbial diversity in acid heap leaching and bio鄄heap鄄leaching with fluoride鄄bearing uranium ores. Nonferrous Met (Extract Metall), 2016(3): 26 (刘亚洁, 柳建设, 李江, 等. 含氟铀矿石酸法堆浸与生物堆 浸体系微生物群落多样性比较. 有色金属(冶炼部分), 2016 (3): 26) [10] Bibi S, Kamran M A, Sultana J, et al. Occurrence and methods to remove arsenic and fluoride contamination in water. Environ Chem Lett, 2017, 15(1): 125 [11] Magesh N S, Chandrasekar N, Elango L. Occurrence and distri鄄 bution of fluoride in the groundwater of the Tamiraparani River basin, South India: a geostatistical modeling approach. Environ Earth Sci, 2016, 75(23): 1483 [12] Shen J J, Sch覿fer A. Removal of fluoride and uranium by nanofil鄄 tration and reverse osmosis: a review. Chemosphere, 2014, 117: 679 [13] Ma L Y, Wang X J, Tao J M, et al. Differential fluoride toler鄄 ance between sulfur鄄 and ferrous iron鄄grown Acidithiobacillus fer鄄 rooxidans and its mechanism analysis. Biochem Eng J, 2017, 119: 59 [14] Yin J L. Distribution of Fluoride and Aluminum Fractions in Soil Aggregates and the Relationship with Soil Chemical Properties un鄄 der Tea Plantation [Dissertation]. Ya蒺an: Sichuan Agricultural University, 2016 (殷佳丽. 茶园土壤团聚体氟、铝形态分布及其与土壤化学 性质的关系[学位论文]. 雅安: 四川农业大学, 2016) [15] Yasuda E Y, Koroishi E T, Vargas J A V, et al. Dissolution e鄄 valuation of coquina, Part 1: carbonated鄄brine continuous injec鄄 tion using computed tomography and PHREEQC. Energy Fuels, 2018, 32(4): 5289 [16] Guneriusson L, Sandstr觟m 魡, Holmgren A, et al. Jarosite inclu鄄 sion of fluoride and its potential significance to bioleaching of sul鄄 phide minerals. Hydrometallurgy, 2009, 96(1鄄2): 108 ·1230·
<<向上翻页
©2008-现在 cucdc.com 高等教育资讯网 版权所有