正在加载图片...
.1374 工程科学学报,第43卷,第10期 源激活主导塑性屈服 [13]MaaB R.Derlet P M.Greer J R.Independence of slip velocities on applied stress in small crystals.Small,2015,11(3):341 参考文献 [14]Csikor F F,Motz C,Weygand D,et al.Dislocation avalanches, [1]Liu B.XuZ W,Li R,et al.Insit experiment on critical thickness strain bursts,and the problem of plastic forming at the micrometer scale.Science,.2007,318(5848:251 of brittle-ductile transition of single-crystal silicon.Chin J Eng, [15]Cui Y N,Po G,Ghoniem N.Controlling strain bursts and 2019,41(3):343 avalanches at the nano-to micrometer scale.Phys Rev Lett,2016, (刘冰,徐宗伟,李蕊,等.单品硅脆塑转变临界厚度的原位实验 117(15):155502 工程科学学报,2019,41(3):343) [16]Cui Y N,Po G,Ghoniem N.Influence of loading control on strain [2]Shui L,Hu Z Q.Creep fracture of a nickel base single crysta bursts and dislocation avalanches at the nanometer and micrometer superalloy along [orientation.ChinJEng,015,37(5):615 scale.Phys Rev B,2017,95(6:064103 (水丽,胡壮麒.一种011]取向镍基单品合金的蠕变断裂.工程 [17]Meyers M A,Gregori F,Kad B K,et al.Laser-induced shock 科学学报,2015,37(5):615) compression of monocrystalline copper:Characterization and [3]Bai QS,Hu C,Bai J X,et al.Tensile properties of monocrystalline analysis.Acta Mater,2003,51(5):1211 copper component based on discrete dislocation dynamics./Plast [18]Hu J Q,Liu Z L,Erik V D G,et al.Strain rate effects on the plastic Emg,2018,25(5:270 flow in submicron copper Pillars:Considering the influence of (白清顺,胡超,白锦轩,等.基于离散位错动力学的单品铜构件 sample size and dislocation nucleation.Extreme Mech Lett,2017, 拉伸特性研究.塑性工程学报,2018,25(5):270) 17:33 [4]Dong X H,Wang Q,Zhang H M,et al.Research progress of size [19]Jennings A T,Li J,Greer J R.Emergence of strain-rate sensitivity effect in microforming.Sci Sinica Technol.2013.43(2):115 in Cu nanopillars:Transition from dislocation multiplication to (董湘怀,王倩,章海明,等微成形中尺寸效应研究的进展.中 dislocation nucleation.Acta Mater,2011,59(14):5627 国科学:技术科学,2013,43(2):115) [20]Zheng Z B,Balint D S,Dunne F P E.Rate sensitivity in discrete [5]Huang G J,Duan Z P,Wang W B.Dynamical analysis on the dislocation plasticity in hexagonal close-packed crystals.Acta formation of dislocation pattern in the easy slip stage of single Maer,2016,107:17 crystals 1.Acta Mech Sinica,1998,30(1):65 [21]Guo X R,Sun C Y,Wang C H,et al.Investigation of strain rate (黄国君,段祝平,王文标.单品易滑移阶段位错结构形成的动 effect by three-dimensional discrete dislocation dynamics for fcc 力学分析.力学学报,1998.30(1):65) single crystal during compression process.Acta Metall Sin018, [6]Zhang X,Aifantis K E.Accounting for grain boundary thickness 54(9:1322 in the sub-micron and nano scales.Rev Ady Mater Sci,2010 (郭样如,孙朝阳,王春晖,等.基于三维离散位错动力学的fCc结 26(1):74 构单晶压缩应变率效应研究.金属学报,2018,54(9):1322) [7]Zhang X,Aifantis K E.Interpreting strain bursts and size effects in [22]Agnihotri P K,Erik V D G.On the rate sensitivity in discrete micropillars using gradient plasticity.Mater Sci Eng:A,2011, dislocation plasticity.Mech Mater,2015,90:37 528(15):5036 [23]LeSar R.Simulations of dislocation structure and response.Anm [8]Fan H D,Wang Q Y,El-Awady J A,et al.Strain rate dependency Rev Condens Matter Phys,2014,5(1):375 of dislocation plasticity.Nat Commmn,2021,12:1845 [24]Anderson P M,Hirth J P,Lothe J.Theory of dislocations.3rd Ed. [9]He S L,Jiang W T,Bai J S,et al.Study of dynamical mechanical Cambridge:Cambridge University Press,2017 properties and dislocation dynamics of copper single crystals by [25]Van der Giessen E,Needleman A.Discrete dislocation plasticity: discrete dislocation dynamics simulation.IOP Conf Ser.Mater Sci A simple planar model.Modelling Simul Mater Sci Eng,1995, Emg,2020,770:012094 3(5):689 [10]Cui Y N.The Investigation of Plastic Behavior by Discrete [26]Zheng Z.B.Investigation of Cold Dwell Facet Fatigue in Titanium Dislocation Dynamics for Single Crystal Pillar at Submicron Scale Alloys Utilising Crystal Plasticity and Discrete Dislocation [Dissertation].Beijing:Tsinghua University,2014 Plasticiry Modelling Techniques [Dissertation].London:Imperial (崔一南.亚微米单品柱塑性行为的离散位错研究学位论文] College London,2016 北京:清华大学,2014) [27]Argon A.Strengthening Mechanisms in Crystal Plasticity.Oxford: [11]Gao Y.Discrete Dislocation Mechanism on Submicro-Crystal Oxford University Press,2007 Plasticity [Dissertation].Beijing:Tsinghua University,2011 [28]Gillis PP.Gilman J J,Taylor J W.Stress dependences of (高原.亚微米晶体塑性的离散位错机理学位论文].北京:清华 dislocation velocities.Philos Mag:AJ Theor Exp Appl Phys,1969. 大学,2011) 20(164):279 [12]Papanikolaou S,Dimiduk D M,Choi W,et al.Quasi-periodic [29]Benzerga AA.An analysis of exhaustion hardening in micron- events in crystal plasticity and the self-organized avalanche scale plasticity.Int J Plast,2008,24(7):1128 oscillator.Nature.2012.490(7421):517 [30]Cleveringa HH M,Van der Giessen E,Needleman A.A discrete源激活主导塑性屈服. 参    考    文    献 Liu B, Xu Z W, Li R, et al. In-situ experiment on critical thickness of  brittle-ductile  transition  of  single-crystal  silicon. Chin J Eng, 2019, 41(3): 343 (刘冰, 徐宗伟, 李蕊, 等. 单晶硅脆塑转变临界厚度的原位实验. 工程科学学报, 2019, 41(3):343) [1] Shui  L,  Hu  Z  Q.  Creep  fracture  of  a  nickel  base  single  crystal superalloy along [011] orientation. Chin J Eng, 2015, 37(5): 615 (水丽, 胡壮麒. 一种[011]取向镍基单晶合金的蠕变断裂. 工程 科学学报, 2015, 37(5):615) [2] Bai Q S, Hu C, Bai J X, et al. Tensile properties of monocrystalline copper component based on discrete dislocation dynamics. J Plast Eng, 2018, 25(5): 270 (白清顺, 胡超, 白锦轩, 等. 基于离散位错动力学的单晶铜构件 拉伸特性研究. 塑性工程学报, 2018, 25(5):270) [3] Dong X H, Wang Q, Zhang H M, et al. Research progress of size effect in microforming. Sci Sinica Technol, 2013, 43(2): 115 (董湘怀, 王倩, 章海明, 等. 微成形中尺寸效应研究的进展. 中 国科学:技术科学, 2013, 43(2):115) [4] Huang  G  J,  Duan  Z  P,  Wang  W  B.  Dynamical  analysis  on  the formation  of  dislocation  pattern  in  the  easy  slip  stage  of  single crystals 1. Acta Mech Sinica, 1998, 30(1): 65 (黄国君, 段祝平, 王文标. 单晶易滑移阶段位错结构形成的动 力学分析. 力学学报, 1998, 30(1):65) [5] Zhang X, Aifantis K E. Accounting for grain boundary thickness in  the  sub-micron  and  nano  scales. Rev Adv Mater Sci,  2010, 26(1): 74 [6] Zhang X, Aifantis K E. Interpreting strain bursts and size effects in micropillars  using  gradient  plasticity. Mater Sci Eng:A,  2011, 528(15): 5036 [7] Fan H D, Wang Q Y, El-Awady J A, et al. Strain rate dependency of dislocation plasticity. Nat Commun, 2021, 12: 1845 [8] He S L, Jiang W T, Bai J S, et al. Study of dynamical mechanical properties  and  dislocation  dynamics  of  copper  single  crystals  by discrete dislocation dynamics simulation. IOP Conf Ser:Mater Sci Eng, 2020, 770: 012094 [9] Cui  Y  N. The Investigation of Plastic Behavior by Discrete Dislocation Dynamics for Single Crystal Pillar at Submicron Scale [Dissertation]. Beijing: Tsinghua University, 2014 ( 崔一南. 亚微米单晶柱塑性行为的离散位错研究[学位论文]. 北京: 清华大学, 2014) [10] Gao  Y. Discrete Dislocation Mechanism on Submicro-Crystal Plasticity [Dissertation]. Beijing: Tsinghua University, 2011 ( 高原. 亚微米晶体塑性的离散位错机理[学位论文]. 北京: 清华 大学, 2011) [11] Papanikolaou  S,  Dimiduk  D  M,  Choi  W,  et  al.  Quasi-periodic events  in  crystal  plasticity  and  the  self-organized  avalanche oscillator. Nature, 2012, 490(7421): 517 [12] Maaß R, Derlet P M, Greer J R. Independence of slip velocities on applied stress in small crystals. Small, 2015, 11(3): 341 [13] Csikor  F  F,  Motz  C,  Weygand  D,  et  al.  Dislocation  avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science, 2007, 318(5848): 251 [14] Cui  Y  N,  Po  G,  Ghoniem  N.  Controlling  strain  bursts  and avalanches at the nano- to micrometer scale. Phys Rev Lett, 2016, 117(15): 155502 [15] Cui Y N, Po G, Ghoniem N. Influence of loading control on strain bursts and dislocation avalanches at the nanometer and micrometer scale. Phys Rev B, 2017, 95(6): 064103 [16] Meyers  M  A,  Gregori  F,  Kad  B  K,  et  al.  Laser-induced  shock compression  of  monocrystalline  copper:  Characterization  and analysis. Acta Mater, 2003, 51(5): 1211 [17] Hu J Q, Liu Z L, Erik V D G, et al. Strain rate effects on the plastic flow  in  submicron  copper  Pillars:  Considering  the  influence  of sample size and dislocation nucleation. Extreme Mech Lett, 2017, 17: 33 [18] Jennings A T, Li J, Greer J R. Emergence of strain-rate sensitivity in  Cu  nanopillars:  Transition  from  dislocation  multiplication  to dislocation nucleation. Acta Mater, 2011, 59(14): 5627 [19] Zheng Z B, Balint D S, Dunne F P E. Rate sensitivity in discrete dislocation  plasticity  in  hexagonal  close-packed  crystals. Acta Mater, 2016, 107: 17 [20] Guo X R, Sun C Y, Wang C H, et al. Investigation of strain rate effect  by  three-dimensional  discrete  dislocation  dynamics  for  fcc single crystal during compression process. Acta Metall Sin, 2018, 54(9): 1322 (郭祥如, 孙朝阳, 王春晖, 等. 基于三维离散位错动力学的fcc结 构单晶压缩应变率效应研究. 金属学报, 2018, 54(9):1322) [21] Agnihotri  P  K,  Erik  V  D  G.  On  the  rate  sensitivity  in  discrete dislocation plasticity. Mech Mater, 2015, 90: 37 [22] LeSar R. Simulations of dislocation structure and response. Annu Rev Condens Matter Phys, 2014, 5(1): 375 [23] Anderson P M, Hirth J P, Lothe J. Theory of dislocations. 3rd Ed. Cambridge: Cambridge University Press, 2017 [24] Van der Giessen E, Needleman A. Discrete dislocation plasticity: A  simple  planar  model. Modelling Simul Mater Sci Eng,  1995, 3(5): 689 [25] Zheng Z B. Investigation of Cold Dwell Facet Fatigue in Titanium Alloys Utilising Crystal Plasticity and Discrete Dislocation Plasticity Modelling Techniques [Dissertation].  London:  Imperial College London, 2016 [26] Argon A. Strengthening Mechanisms in Crystal Plasticity. Oxford: Oxford University Press, 2007 [27] Gillis  P  P,  Gilman  J  J,  Taylor  J  W.  Stress  dependences  of dislocation velocities. Philos Mag:A J Theor Exp Appl Phys, 1969, 20(164): 279 [28] Benzerga  A  A.  An  analysis  of  exhaustion  hardening  in  micron￾scale plasticity. Int J Plast, 2008, 24(7): 1128 [29] [30] Cleveringa H H M, Van der Giessen E, Needleman A. A discrete · 1374 · 工程科学学报,第 43 卷,第 10 期
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有