6 8-I suonoos'0 isiunoo 0 yIM swajqoud sasneo inq 'ajqisuas swaas N_1+2=0 ← 0=9-I-0= OP 0 ()Tp I= (0-1)+=(oulpdo=(ulp)d o=(ulp)T :pooy!lay!l-o1 ay1 oj aisea s!yolym-0''M sIyl aziwixeW ,0-t)·0=(ylp)dⅡ=(ulp)d os 'suonenasqo (painqunsip Klleonuap!'quapuadapul)'p'l'!aue asayL sau!l 2-N-pue salayp 2 'salpueo N deumun am asoddns 0ADIH sjapow jo Klwej (jelwoulq)ajdwls siya joj jaaweed e s! 0 0y sasayiodKy jo wnnunuo :a]qissod s!Auy (a4=)d iselpue Kuay jo uonpey :Jaunpejnuew Mau e wolj geg sqou saKeg ur Suruleol ogaweled II nets es y Ba in learning parameter ML candies? cherry of θ fraction manufacturer; new a from Bag Flavor ) F=cherry ( P θ θ h otheses hyp of continuum ossible: p is θ Any dels mo of family ) binomial ( simple this r fo rameter pa a is θ limes c − N=` and cherries c candies, N unwrap e w ose Supp so observations, distributed) identically endent, (indep i.i.d. re a These =)θ h| d( P NY1 =j θ =)θ h|j d( P c ) θ − (1 · ` : do eliho log-lik the r fo easier is —which θ w.r.t. this Maximize =)θ h| d( P log =)θ h| d( L NX1 =j ) θ − (1 log ` +θ log c =)θ h|j d( P log )θ h| d( dL dθ = c θ − ` θ −1 =θ ⇒ 0 = c ` +c = cN counts! 0 with roblems p causes but sensible, Seems 9 1–3 Sections 20, Chapter