正在加载图片...
袁飞等:碳纤维负载零价铁的制备及其去除水溶液中的六价铬 ·631 100a) b ■290K 。305K ▲325K 40 4-290K 305K -325K 0 20 4060 80100120 610 010 2030 4050 60 t/min t/min 图7温度对Cr(VI)去除率的影响及其动力学.(a)温度对C(VI)去除率的影响:(b)不同温度下C()去除动力学 Fig.7 Effect of temperature on Cr(VI)removal and its kinetics:(a)effect of temperature on Cr (VI)removal:(b)kinetics of Cr(VI)removal at various temperature 加速了Cr(VI)向PCF-ZVI表面运动的活性和电子转 (2)pH值对PCF-ZVI上铁还原Cr(VI)的影响较 移的活化能,进而促进还原反应的进行四.根据A- 大,酸性条件明显优于碱性条件:提高溶液温度,反应 rhenius公式@得出速率常数和反应温度关系,以 速率加快. lk对1/T作图,结果如图8所示,根据其斜率-E/R (3)PCF-ZVI对Cr(VI)的还原过程符合准一级 求出反应的活化能E 反应动力学,表观常数与溶液C(VI)初始质量浓度和 k=4e(号 (7) 溶液pH成反比,与温度成正比.还原速率与反应温度 的关系符合Arrhenius定律,反应活化能E为20.683kJ· In ka =In A -RT E (8) mol,还原反应较易进行. 式中:E为反应的活化能,kJ.mol:T为反应温度,K; R为摩尔气体常数:A为频率因子 参考文献 -0.6 [Owlad M.Aroua M K.Daud W A,et al.Removal of hexavalent chromium-contaminated water and wastewater:a review.Water Air 0.8 Soil Pollut,2009,200(14):59 [2]Ngah WW,Hanafiah M.Removal of heavy metal ions from -1.0 wastewater by chemically modified plant wastes as adsorbents:a -12 review.Bioresour Technol,2008,99(10):3935 [3]Fendorf S,Wielinga B W,Hansel C M.Chromium transforma- -14 tions in natural environments:the role of biological and abiological -1.6 processes in chromium (VI)reduction.Int Geol Rev,2000,42 (8):691 3.0 3.1 3.2 33 3.4 3.5 10'T/K [4]Miretzky P,Cirelli A F.Cr(VI)and Cr(IlI)removal from aque- 图8lnk与1/T的关系 ous solution by raw and modified lignocellulosic materials:a re- Fig.8 Relation between Ink and 1/T view.J Hazard Mater,2010,180(13):1 [5]Gheju M.Hexavalent chromium reduction with zero-valent iron 由图8中直线斜率可求得表观活化能E=20.683 (ZVI)in aquatic systems.Water Air Soil Pollut,2011,222(1- kJ·mol-,低于一般化学反应的活化能(60~250kJ· 4):103 [6]Fan L,Ni J,Wu Y,et al.Treatment of bromoamine acid mol),说明该还原反应较易进行.据图8截距可求 wastewater using combined process of micro-electrolysis and bio- 得A=e66=969.88min1. logical aerobic filter.J Hazard Mater,2009,162 (23):1204 7]Jin Y Z,Zhang Y F,Li W.Experimental study on micro-electrol- 3结论 ysis technology for pharmaceutical wastewater treatment.Zhe- (1)当铁碳质量比为2:1,投加量(以Fe°计)为2 jiang Univ Sci,2002,3(4)401 gL,Cr(VT)初始质量浓度为20mgL,pH值为5, [8]Li X S,Xu J,Jiang G M,et al.Removal of chromium (VI)from wastewater by nanoscale zerovalent iron particles supported on PCF-ZWI对Cr(VI)的去除在40min后,达到99.96%, multiwalled carbon nanotubes.Chemosphere,2011,85(7):1204 去除效果和去除速率都明显优于普通铁碳. Li J G,Li J,Li Y G.Cadmium removal from wastewater by袁 飞等: 碳纤维负载零价铁的制备及其去除水溶液中的六价铬 图 7 温度对 Cr( VI) 去除率的影响及其动力学 . ( a) 温度对 Cr( VI) 去除率的影响; ( b) 不同温度下 Cr( VI) 去除动力学 Fig. 7 Effect of temperature on Cr( VI) removal and its kinetics: ( a) effect of temperature on Cr( VI) removal; ( b) kinetics of Cr( VI) removal at various temperature 加速了 Cr( VI) 向 PCF--ZVI 表面运动的活性和电子转 移的活化能,进而促进还原反应的进行[19]. 根据 Ar￾rhenius 公 式[20] 得 出速率常数和反应温度关系,以 lnkobs对 1 /T 作图,结果如图 8 所示,根据其斜率 - E /R 求出反应的活化能 E. k = A· ( exp - E ) RT . ( 7) ln kobs = ln A - E RT. ( 8) 式中: E 为反应的活化能,kJ·mol - 1 ; T 为反应温度,K; R 为摩尔气体常数; A 为频率因子. 图 8 ln kobs与 1 /T 的关系 Fig. 8 Relation between lnkobs and 1 /T 由图 8 中直线斜率可求得表观活化能 E = 20. 683 kJ·mol - 1,低于一般化学反应的活化能( 60 ~ 250 kJ· mol - 1 ) ,说明该还原反应较易进行. 据图 8 截距可求 得 A = e6. 96306 = 969. 88 min - 1 . 3 结论 ( 1) 当铁碳质量比为 2∶ 1,投加量( 以 Fe0 计) 为 2 g·L - 1,Cr( VI) 初始质量浓度为 20 mg·L - 1,pH 值为 5, PCF--ZVI 对 Cr( VI) 的去除在 40 min 后,达到 99. 96% , 去除效果和去除速率都明显优于普通铁碳. ( 2) pH 值对 PCF--ZVI 上铁还原 Cr( VI) 的影响较 大,酸性条件明显优于碱性条件; 提高溶液温度,反应 速率加快. ( 3) PCF--ZVI 对 Cr( VI) 的还原过程符合准一级 反应动力学,表观常数与溶液 Cr( VI) 初始质量浓度和 溶液 pH 成反比,与温度成正比. 还原速率与反应温度 的关系符合 Arrhenius 定律,反应活化能 E 为 20. 683 kJ· mol - 1,还原反应较易进行. 参 考 文 献 [1] Owlad M,Aroua M K,Daud W A,et al. Removal of hexavalent chromium-contaminated water and wastewater: a review. Water Air Soil Pollut,2009,200( 1-4) : 59 [2] Ngah W W,Hanafiah M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour Technol,2008,99( 10) : 3935 [3] Fendorf S,Wielinga B W,Hansel C M. Chromium transforma￾tions in natural environments: the role of biological and abiological processes in chromium( VI) reduction. Int Geol Rev,2000,42 ( 8) : 691 [4] Miretzky P,Cirelli A F. Cr( VI) and Cr( III) removal from aque￾ous solution by raw and modified lignocellulosic materials: a re￾view. J Hazard Mater,2010,180( 1-3) : 1 [5] Gheju M. Hexavalent chromium reduction with zero-valent iron ( ZVI) in aquatic systems. Water Air Soil Pollut,2011,222( 1- 4) : 103 [6] Fan L,Ni J,Wu Y,et al. Treatment of bromoamine acid wastewater using combined process of micro-electrolysis and bio￾logical aerobic filter. J Hazard Mater,2009,162( 2-3) : 1204 [7] Jin Y Z,Zhang Y F,Li W. Experimental study on micro-electrol￾ysis technology for pharmaceutical wastewater treatment. J Zhe￾jiang Univ Sci,2002,3( 4) : 401 [8] Lü X S,Xu J,Jiang G M,et al. Removal of chromium( VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere,2011,85( 7) : 1204 [9] Li J G,Li J,Li Y G. Cadmium removal from wastewater by · 136 ·
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有