正在加载图片...
教授思路 采用的教学 方法和辅助 手段,板书1、先研究非齐次线性方程组解的性质,再讨论解集的结构。 设计,重点 如何突出 2、在学习线性方程组的解法举例时,要注意紧扣前面的理论 难点如何解 决,师生互 动等 作业布置见作业册 主要 参考资料教材及参考书 备注 西安石油大学教案(章节备课) 学时:6课时 章节第五章矩阵的相似对角化 知识点和分矩阵的相似、矩阵的特征值及特征向量、方阵的相似对角化、正交矩阵、实对称阵的正交相似 的对角化 征值、特征向量及其求法,矩 重点 难点 矩阵对角化及其求法 要求掌握内[知降的特征值与将征问量的概念及其求法。相似矩降的念和性质及矩降对角化的充要条 件,实对称矩阵的相似对角化。线性无关的向量组正交规范化。正交变换与正交矩阵的概念和教授思路, 采用的教学 方法和 辅助 手段,板书 设计,重点 如何突出, 难点如何解 决,师生互 动等 1、 先研究非齐次线性方程组解的性质,再讨论解集的结构。 2、 在学习线性方程组的解法举例时,要注意紧扣前面的理论。 作业布置 见作业册 主要 参考资料 教材及参考书 备注 西安石油大学教案(章节备课) 学时:6课时 章节 第五章 矩阵的相似对角化 知识点和分 析方法 矩阵的相似、矩阵的特征值及特征向量、方阵的相似对角化、正交矩阵、实对称阵的正交相似 的对角化 重点 难点 矩阵的特征值、特征向量及其求法,矩阵对角化及其求法。 矩阵对角化及其求法。 要求掌握内 容 矩阵的特征值与特征向量的概念及其求法。相似矩阵的概念和性质及矩阵对角化的充要条 件,实对称矩阵的相似对角化。线性无关的向量组正交规范化。正交变换与正交矩阵的概念和 性质
<<向上翻页向下翻页>>
©2008-现在 cucdc.com 高等教育资讯网 版权所有